
Applied Computer Systems

__2013/ 14

19

doi: 10.2478/acss-2013-0003

Improvement of the Two-Hemisphere Model-Driven
Approach for Generation of the UML Class Diagram

Oksana Nikiforova1, Konstantins Gusarovs2, Olegs Gorbiks3, Natalja Pavlova4, 1-4Riga Technical University

Abstract – In this paper an ability to apply the two-hemisphere
model-driven approach for creation of the UML class diagram is
discussed and the way to avoid the limitations of the approach is
offered. The result of the proposed improvement of the two-
hemisphere model-driven approach is the increased number of
elements of the UML class diagram available for automatic
generation and several statements for semi-automatic
transformation of business process diagram and the concept
diagram into software components. As a result, the authors can
ascertain that it is possible to apply the improved two-
hemisphere model-driven approach in practice in the real
software development, and not only for academic purpose.

Keywords – two-hemisphere model, UML class diagram, model

transformation, binary route matrix, BrainTool.

I. INTRODUCTION

Many ways of software development and a lot of
methodologies have been discovered and described to this
date. However, there is no one, which could be called an ideal
or the best method.

For many years scientists tried to make the software
development process more effective and faster. This was done
not only for the sheer love of science. Making the
development process more effective (meaning to make it less
time consuming, producing less bugs and making the entire
process cheaper) is necessary to ensure the possibility of
developing more complex software systems.

The main focus of this paper is on the so called Model-
Driven Software Development (MDSD) [1]. It claims to
automatically transform an independent system presentation
(from the implementation platform) into the specific software
components. There are many methods within MDSD. One of
these methods, which proposes to create the UML class
diagram from initial presentation of problem domain was
developed in Riga Technical University in 2004 and is called
the Two-hemisphere model-driven approach [2]. More
detailed description of this approach can be found in
Section 2.

Unfortunately, the current version of the transformations
defined by the two-hemisphere model-driven approach has a
number of limitations. There is impossible to obtain the
resulting complete UML class diagram, which includes all
necessary elements such as interfaces and super classes.
Definition of the association types in the resulting UML class
diagram is not completely suitable either.

On the other hand, a number of the MDSD methods (and
the two-hemisphere model-driven approach as one of these)
suggest the effective way of how to transform the user defined

scenarios of the software system into the UML class diagram.
It is not reasonable to dismiss this practice completely. On the
contrary, it is necessary to improve the existing methods and
discover the new ones if required.

This paper describes the way of improving the two-
hemisphere model-driven approach, which is supposed to
avoid certain limitations of the method.

The paper is structured as follows. The next section
describes the initial version of application of the two-
hemisphere model meant for generation of the UML class
diagram. The third section describes the core ideas of the
proposed method improvement. The result analysis is given in
Section 4. The comparison of the two-hemisphere approach to
other analogue methods is discussed in the fifth section and
the conclusion is given in Section 6.

II. DESCRIPTION OF TWO-HEMISPHERE MODEL-DRIVEN

APPROACH (INITIAL VERSION)

 Two-hemisphere model-driven approach proposes to
generate UML class diagram from the so-called two-
hemisphere model of the problem domain, which presents
information about the processes, information flows between
these processes and pre-defined types of these information
flows. The main idea of displaying the initial information
about the system with the help of two interrelated models was
introduced by Nikiforova in 2002 [3]. These two initial
interrelated models are: the business process model (the
shorter name is – the process model), which displays
behaviour of the system and the model of conceptual classes
(the shorter name is – the concept model), which displays a
skeleton of the system static structure.

The meaning of objects in an object-oriented philosophy
gives the possibility to share responsibilities between the
objects based on the direct graph transformation, where the
data outflow from the internal process in the process model
becomes the owner of this process for performing it as an
operation in object communication. The title of the approach
as the two-hemisphere model driven was defined by
Nikiforova and Kirikova in 2004 [2], where the hypothesis of
how to use two interrelated models to share the responsibilities
between object classes was demonstrated on the abstract
example and later in a real project [4].

In general, the two-hemisphere model driven approach uses
the transformation of graph converting nodes of the source
graph into the edges of the target graph and the edges of a
source graph into nodes of the target graph. The essence of the
transformation is illustrated in Figure 1.

Applied Computer Systems

2013/ 14__

20

The business process model (graph G1 in Figure 1) is
interrelated with the concept model (graph G2 in Figure 1) as
shown below. Certain concept in the concept model defines
the data type for one or several data flows between business
processes. The business process model is transformed into an
intermediate model (graph G3 in Figure 1), where the edges
(i.e. data flows) of the business process model become nodes
of an intermediate model, and nodes of the business process
model (i.e. processes) become edges of an intermediate model.

Semantics of the nodes and edges of the intermediate model
is the same as of the UML communication diagram (graph G4
in Figure 1), where nodes of the intermediate model are the
edges (i.e. objects) of communication diagram, and nodes of
the intermediate model are the edges (i.e. messages to perform
the operation) of the communication diagram.

Fig. 1. Two-hemisphere model transformation into class model
(initial version)

The communication diagram itself serves as the basis for
the definition of classes-owners of methods in the UML class
diagram (graph G5 in Figure 1). Details of application of the
two-hemisphere model are provided in [5], [6], [7].

Analysis of different situations, which may appear when
drawing the process model, i.e. number of incoming and
outgoing data flows, variety of their types, etc., has provided
the possibility to define various transformation cases

depending on the number of process inputs and outputs and
their cardinality (a set of differently typed data flows incoming
or outgoing from the process). These transformation cases are
implemented according to definition of relationships between
generated classes, which are expressed in [8]. Possible
variations of the two-hemisphere model and the corresponding
fragments of the UML class diagram are summarized in
Figure 2.

At the moment the transformations are defined only for the
cases where either data flows (both incoming and outgoing)
are defined of the same type or the process has a single
outgoing data flow or multiple outputs are of the same type. In
cases, when direct transformation is not possible, an interface
class for implementation of problematic process is created or a
developer of the two-hemisphere model has to create the sub-
process diagram for the problematic process, let for any
process would be defined single information flow outgoing
from the process.

Successful application of the two-hemisphere model
transformation into the UML class diagram served as a
motivation to support these transformations with the software
system. The first software prototype of the tool supporting
two-hemisphere model based transformation was introduced
in 2008 [5], [9]. The prototype used textual information in
special format as a source and produced the text file
containing description of the resulting UML class diagram as a
specification, where classes, attributes, methods and
relationships were listed in a pre-defined format. Analysis of
these generated text files gave authors an opportunity to refine
transformations for definition of relationships between the
classes; the results are published in [8].

Currently, the ability to apply the two-hemisphere model
for generation of the UML sequence diagram with the
attention on the timing aspect is investigated, and preliminary
results are published in [10]. So far, the continuing research in
the area of model-driven software development and an
increasing demand in the industry for automation of the ability
to bridge the gap between the problem domain and software
components, served as the motivation to develop the two-
hemisphere model driven approach supporting tool – the
BrainTool [11], [12], which allows to draw the two-
hemisphere model in the manner suitable for the problem
domain expert and to generate the UML class diagram from it.

Applied Computer Systems

__2013/ 14

21

b1

b2

B

Intermediate model Collaboration diagram

: A

P

B’:B
PA’:A

: A
P

: B

P A’’:AA’:A A’’:A
PA’:A

Target (UML class diagram)

P
A’’:A

A’:A
A’’’:A

B’:B
P

A’:A

A’’:A

P

: B

b1
b2

p()

: A

a1
a2

A’’’:A
P

A’:A

A’’:A

P

P B’:B

P

B’’:B
P

A’:A

B’:B

P

P

P

C’:C
P

A’:A : A P

B’:B

P

: B P

: A
a1
a2 C

c1
c2

p()

: B
b1
b2

: B: A

P

P C’:C

Source (two hemisphere model)

P
A':A A’’:A

A’’’:A a1

a2

A

A’’’:AP

A’’:A
A’:A

P

1

5

6

8

9

B’:B
PA’:AP

7

A””:AP

A’”:AA’:A
P

A’’:A

P

P

P
a1

a2

A

: C

a1

a2

A

a1

a2

A
A

a1
a2
p()

2

3

4

In cases, where incoming and outgoing information flows are
of the same type:
- object collaboration is expressed as message selfsending
- the process is assigned for responsibility to the class, which
defines the type for incoming and outgouing information flows

a1
a2

A In cases, where incoming and outgoing flows are of the
different types and outgoing flow is single *:
- object collaboration is expressed as message sent to
perform to object of outgoing flow’s type**
- the process is assigned for responsibility to the class, which
defines the type for outgouing information flow
- at least dependency is defined between classes, additional
human analysis is required to apply aggregation.

*additional case is the case No. 7, where multiple flows are
outgoing from the process P, but all outgoing flows are of the
same type
**and additional selfsending message in the case No. 8

c1
c2

C

b1

b2

B

a1
a2

A

A':A

A’’:A

A’’’:A

A””:A

A':A

A':A

A’’:A
B’:B

B’:B

B’’:B b1

b2

B

a1
a2

A

b1

b2

B

a1
a2

AB’’:B

B’:B

A':A

A':A

A':A

B’:B
b1

b2

B

a1
a2

A

Fig. 2. Transformation cases defined by initial version of two-hemisphere model driven approach

Figure 3 demonstrates a two-hemisphere model, where the
problem domain is the two-hemisphere model driven approach
itself for development of the BrainTool. The modeller of the
problem domain should in the first place model any process of
the operating system; then some of other processes have to be

placed to unable the definition of the information flow
between any two processes. The information flow, at first,
should be created and linked to processes and then it becomes
possible to define the data type for this information flow, etc.

Applied Computer Systems

2013/ 14__

22

Fig. 3. Two-hemisphere model of the two-hemisphere model-driven approach itself

Applied Computer Systems

__2013/ 14

23

Fig. 4. Class model generated by initial version of the approach

The process model on the left side of Figure 3 presents the
process for drawing the two-hemisphere model. The concept
model on the right side of Figure 3 demonstrates the
conceptual structure of the two-hemisphere model. Figure 4
shows the resulting UML class diagram, which is generated
from the two-hemisphere model according to the
transformations defined by the approach and which should be
used to implement the software system of BrainTool.

The four classes (located separately at the bottom of Figure
4) are defined, which demonstrate the limitation of the initial
version of the transformations defined by the approach. These
limitations relate to the transformation cases, where the
process has several outputs typed by different concepts and
therefore the transformation does not define, which of the
classes should perform this process as an operation. These
four “problematic” processes are the following (numeration
see in Figure 3):

 No.9 add data flow to process model,
 No.11 add process to model,
 No. 14 add concept to model,
 No. 20 assign selected concept to selected data

flow.
The current version of the approach requires creation of the

sub-process diagrams for these processes to ensure the ability
for transformation. However, if these processes take place,
further decomposition does not provide a way to define the
owner of the operation. Therefore, the approach needs several
addition transformations to complete the problem. To improve
the current version of the two-hemisphere model-driven
approach, the authors have selected these problematic
situations for a more profound analysis and try to define at
least a semi-automatic support for redrawing the problematic
process. The result of this activity is described in the next
section.

 class Initial_v ersion_2H...

ProcessModel

~ elements: ProcessElement[],DataFlowElement[]

~ in_get_process_model() : void
~ out_redraw_process_model() : void

TreeView

~ elements: Element[]

~ add_concept_to_tree_view() : void
~ add_data_flow_to_tree_view() : void
~ add_process_to_tree_view() : void
~ in_get_tree_view() : void
~ out_redraw_tree_view() : void

ConceptModel

~ elements: ConceptElement[]

~ in_get_concept_model() : void
~ out_redraw_concept_model() : void

DataFlowElement

~ comment: String
~ concept: ConceptElement
~ endX: int
~ endY: int
~ id: long
~ name: String
~ source: ProcessElement
~ startX: int
~ startY: int
~ target: ProcessElement

~ assign_selected_concept_to_selected_data_flow() : void
~ connect_processes_with_data_flow() : void
~ create_data_flow_element() : void
~ out_redraw_process_model() : void
~ select_data_flow() : void
~ set_data_flow_name() : void

ConceptElement

~ attributes: Attribute[]
~ comment: String
~ dataFlows: DataFlowElement[]
~ height: int
~ id: long
~ name: String
~ width: int
~ x: int
~ y: int

~ add_attributes() : void
~ create_concept_element() : void
~ out_redraw_concept_model() : void
~ select_concept() : void
~ set_concept_name() : void

ElementFromPalete

~ picture: String
~ type: String

~ in_get_concept_element_from_palete() : void
~ in_get_data_flow_element_from_palete() : void
~ in_get_process_element_from_palete() : void

ProcessElement

~ comment: String
~ height: int
~ id: long
~ name: String
~ performer: String
~ width: int
~ x: int
~ y: int

~ create_process_element() : void
~ get_source_process() : void
~ get_target_process() : void
~ out_redraw_process_model() : void
~ set_process_name() : void

To_perform_add_data_flow_to_process_model

~ add_data_flow_to_process_model() : void

To_perform_add_process_to_model

~ add_process_to_model() : void

To_perform_add_concept_to_model

~ add_concept_to_model() : void

To_perform_assign_selected_concept_to_selected_data_flow

~ assign_selected_concept_to_selected_data_flow() : void

Applied Computer Systems

2013/ 14__

24

III. IMPROVEMENT OF TWO-HEMISPHERE MODEL-DRIVEN

APPROACH

To get rid of problematic processes, which have multiple
outputs of different data types the authors suggest to add
creation and analysis of the transition matrix for the two-
hemisphere model. For creation of the transition matrix after
initial creation of the business process diagram, concept
diagram and concept assignment to data flows a modeller
should be asked to perform primary validation of the
developed model. This can be done by asking series of
questions if some concept is required to perform the exact
process and to get the defined concept in the output. This
allows generating methods with the same names for different
classes even with different sets of arguments. For example, in

process No.9 in Figure 3 should initiate the following
question: who is responsible for “add data flow to process
model” operation – data flow itself or a process model?.
Depending on an answer class containing this method is being
chosen. This is first option. Another option is to introduce
method with same name but different signatures in both
classes.

The matrix of the required transitions is square matrix
MxM, where M is an amount of concepts in a two-hemisphere
model. Each cell of matrix contains the set of processes, which
takes the data flow of the concept defined in column as an
input and outputs the data flow of another concept defined in
row. Such matrix for two-hemisphere model shown in Figure
3 and 4 is presented in Table 1.

TABLE I

THE MATRIX OF THE REQUIRED TRANSITIONS

 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 ∅ ∅ ∅ ∅ {7} {8} {6} ∅ ∅

C2 ∅ {25,26,27} ∅ ∅ ∅ ∅ ∅ ∅ ∅

C3 ∅ ∅ {9,11} ∅ {10,11,16} ∅ {9,12} ∅ ∅

C4 ∅ ∅ ∅ {14} ∅ {13,14} ∅ ∅ ∅

C5 ∅ {26} {11} ∅ {11,17} ∅ {19} ∅ ∅

C6 ∅ {27} ∅ {14} ∅ {14,18,20,22} {20} ∅ ∅

C7 ∅ {25} {9} ∅ ∅ {20} {9,15,19,20} ∅ ∅

C8 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

C9 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Based on the matrix of the required transitions the binary
route matrix can be created for validation of the two-
hemisphere model. The binary route matrix is square NxN
matrix where N is the amount of processes in the two-
hemisphere model. The cell of the binary route matrix is equal
to 1 if the path exists in the business process model between
the two processes and it is listed in the corresponding cell of
the matrix of the required transitions. The cell of the binary
route matrix is equal to 0 if no such path exists. The binary
route matrix is not included in this paper because of its large
size (28 rows *28 columns). It is applied to the two-
hemisphere model presented in Figure 3 in order to perform
model validation according the following constraints, which
must be satisfied:

1. Each node (process) in the business process model graph
should be visited meaning the sum of values on each route
matrix column except for the columns representing external
input processes (processes having only outputs) should be
greater than 0.

2. A route must exist from any external input process
(processes having only outputs) to at least one external output
process (processes having only inputs).

If the validation, which uses the binary route matrix is
successful, the method should proceed to the next step –
creation of class method signatures. Signatures are created by
using the matrix of the required transitions. During signature
creation the owner of the created method is also being

detected. The owner class of the process is the output concept
type, but the arguments of this method are the concepts that
are required to get the process output data flow by this process
according to the required transition matrix.

The outgoing external processes are an exception – they are
owned by the input data flow concept. The external input
processes have no inputs and return the owner. The external
output processes have only one input (the owner) and have no
return. For example, process P has three inputs with types C1,
C2 and C3. This process has two outputs with types C4 and
C5. The setting in the required transition matrix is such as in
order to get the data flow with type C4, the data flows with
types C1 and C3 are required, while in order to get the data
flow with type C5, the data flow with type C2 is required. As a
result, the class C4 will have method P(C1, C3):C4, while the
class C5 will have method P(C2):C5.

If one of the input data flow assigned concepts is the same
as the process owner class it may be removed from the
argument list assuming the same object. This can be done
automatically, however the authors would like also to enable a
step by step validation of each created method for the purpose
of checking, which argument can actually be removed. For
example method signature generation for the concept Process
element is done in following way:
─ ProcessElement → AddProcessToModel(ProcessElement

, ProcessModel): ProcessElement . Argument Process element
is being automatically removed.

Applied Computer Systems

__2013/ 14

25

─ ProcessElement → AddProcessToModel(ProcessModel):
ProcessElement.

Where the following notation is used:
─ Owner Concept → Process (Argument list – concepts

assigned to input data flows): Resulting Concept (determined
in the way described above).

When all the method signatures are determined a class
model is being created. In the initial version of the approach
only dependency between the classes is formally identified as
the relationship based on the following definition:
─ Dependency relationship from class A to class B is

defined if there is the process P, which has an incoming
dataflow (one or several) defined by concept A and outgoing
flow (one or several) defined by concept B.

In addition to this, the authors suggest to define several
more types of the relationships between the classes in the
improved version of the approach. They are the following:
─ Aggregation relationship from class A to class B if A is

contained in B as an attribute.
─ Association relationship between classes A and B is

defined if relations between A and B exist in two ways (for
example, aggregation from A to B and dependency from B to
A).
─ Generalization relationship and realization relationship

definition process are described below.

After the aggregation, dependency and association
relationships are defined, the created model is subject to
iterative analysis in order to determine generalization
relationship based on class attributes and methods: if A and B
contain the same set of attributes a superclass C is being
introduced for them. At this stage the modeller is asked to
provide a class name for C. For example if A is
ProcessElement and B is ConceptElement C may be named
DiagramElement. This process is being repeated iteratively
while at least one new class is being introduced as a result of
iteration. After completing the superclass creation process an
interface detection process is performed. In order to create an
interface A and B should have the method with the same
signature and they should be inherited from different
superclasses (A from C, B from D, for example) thus making
it impossible to escalate method in superclass. This process is
being repeated until iteration produces no new interfaces.

As a result of added and improved transformations the
UML class diagram containing classes with attributes and
methods (with argument types and return types) and 5
different relationships – aggregation, dependency,
generalization, association and realization is produced. The
resulting class model generated for the two-hemisphere model,
presented in Figure 3, is shown in Figure 5.

Fig. 5. Resulting class model using improved transformation

Applied Computer Systems

2013/ 14__

26

IV. ANALYSIS OF THE RESULTS

To perform analysis of the improvement offered for class
diagram models are compared each to other. They are the
following:

1) The UML class diagram generated by the initial
version of the approach. It is shown in Figure 4.

2) The UML class diagram created on the basis of
improvement of transformations. It is shown in Figure
5.

3) The class structure of BrainTool itself created by
BrainTool’s developers manually and can be treated as
a “as-is” model. This model is not included in this
paper due to the limited paper size, but it is also
compared to other models, because this is the model of
the real operating software.

4) The UML class diagram showing how the class model
should look like, which can be named “TO-BE” model.
This model was obtained on the basis of BrainTool
development analysis and contains the improved AS-IS
model with purpose to remove logical problems in it.
TO-BE class model is shown in figure 6.

To estimate the obtained result, the first three models are
compared with TO-BE model. Authors have selected four

comparison criteria describing the core set of the UML class
diagram:

1. Classes (how many correct classes were generated).
2. Attributes (how many attributes in each class are the

same as in the TO-BE model).
3. Methods (how many methods in each class are the same

as in the TO-BE model).
4. Associations (how many among the obtained associations

are correct comparison to the TO-BE model).
The names in the TO-BE model and in the obtained models

may differ, therefore the comparison were done manually on
the basis of the obtained elements semantics. If the meaning of
a differently named elements is the same, in the comparison
process these elements are used as the same elements.

To estimate the result the authors calculated the difference
between the TO-BE model and each of the obtained models.
To find this difference the Pearson Squared distance were
calculated:

X2
Pearson = �((Oi-Ei)/Ei

1/2)2 = �(Oi-Ei)
2/Ei

The Euclid distance is not suitable for such purpose,
because the result depends on the number of elements in the
TO-BE model. Indeed, the Pearson Squared distance allows
elimination of this defect. Using the Pearson Squared distance,
the TO-BE model elements are the hypothesis H0, which is
correct by definition.

Fig. 6. TO-BE class model

Applied Computer Systems

__2013/ 14

27

For each of the criteria vector of N elements was
constructed. The vector for the TO-BE model contains a
number of elements of current criteria. In the obtained model
vector a number of right elements are present minus the
number of extra elements. Thus, the vector for the classes
criteria for the TO-BE model is (zero shows that such class is
not present in the TO-BE model, yet it is present in the
compared model):

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)
For the model, generated with the initial version of the

approach, such vector is:
(0,0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1)

For other criteria only those elements from classes were
brought to the comparison vectors, that are present in both
models, because the method error associated with the class
structure difference is included in the first criteria. For
example, the attributes criteria vector for the TO-BE model:

(1,0,0,7,2,2,7,2,1)
It means that the first class from model class list contains

one correct attribute, the second class contains zero correct
attributes, etc. For the obtained by an improved version of the
approach model in comparison to the TO-BE model such
vector is:

(1,-1,-1,4,1,2,7,2,1)
The task is to find the distance from the H0 model and each

of the obtained models and to compare the results to
determine, how effective each method is and how much
improvement was obtained in comparison to the initial version
of the approach.

One exception was found during the obtained models
analysis. While the obtained model contains the elements, the
TO-BE model contains no such elements. As a result, the
normalisation procedure cannot be performed. To solve this
problem, we need to understand the possible values, which
could be correct.

For example, if the TO-BE model contains three elements,
whereas an obtained model contains no right elements, then
the Pearson Squared distance would be (0-3)2/3=3. In the
opposite case (the TO-BE model contains no-elements, but
obtained model contains three extra elements) the distance,
quite logically, should be the same. Indeed, in case when the
TO-BE model contains no elements and the obtained model
contains three extra elements, the 3 must be simply added to
the calculated distance. For example, for the attribute criteria
described above, the Pearson Squared distance is:

X2
Pearson=(1-1)2/1+1+1+(4-7)2/7+(1-2)2/2+(2-2)2/2+(7-

7)2/7+(2-2)2/2+(1-1)2/1=3.79
The results of entire calculations are described in the Table

2. Because the result of the each obtained model is a three-
dimensional vector, the module of this vector is calculated.
To be able to evaluate the obtained results, these vectors were
normalised. As seen in the table above, the class diagram that
was generated on the basis of improved version of the
approach is located rather close to the class diagram created
manually under the development of BrainTool, in comparison
to the class diagram generated by the initial version of the
method.

TABLE II

REQUIRED TRANSITION MATRIX

 Class
criteria

Attributes
criteria

Methods
criteria

Associations
criteria

Normalised
module of
the vector

Model
AS-IS

5 3.5 4.25 10.08 0.09

Initial
version

11 76.79 37.38 98 0.95

Improved
method

9 3.79 36.13 13.66 0.29

Actually, the resulting distance is so close, that the authors

can assert that an improved version of the approach can be
used to generate class diagrams for actual use with the benefit
of its automatic generation.

The proposed experiments are also applied to several
problem domains studied during definition of the initial
method. They are the fragments of driving school
administration, hotel room booking, and insurance policy
agreement. All of these give the same results for comparison
of initial version to the improved one; however, they are not
shown in this paper due to paper size limitation.

V. RELATED WORK AND COMPARISON TO OTHER MODELLING

APPROACHES

The object-oriented approach is based on representation of
the objects, which interact in the developed system. The most
commonly used model of the system in this approach is class
diagram. The first skeleton of the class diagram was proposed
in 1986 by G.Booch [13] and refined in 1991 by J.Rumbaugh
[14] with the suggestion to denote class with a rectangle,
which includes class name, names and types of the attributes
and names, types and parameters of operations. The idea of
automatic generation of objects interaction has been present
actually since the first outlines in the object representation
area.

During the first studies of the object-oriented approach
entity-relationship (ER) diagrams served as the basis for
obtaining class diagram [15]. In other words, it was the change
of notation. Classes have only names and attributes in this
case. On the other hand, different tools propose to create ER
diagram with the notation of UML class diagram. Therefore,
we can conclude that ER and class diagram are very close, and
represent similar kind of information.

Automatic generation of the system static structure is
researched not only in the object-oriented approach. Aspect-
oriented approach proposes methods for obtaining system
static structure. The automatic generation of some view of
system structure based on system behaviour representation is
the popular topic for researches. Amparo Navasa etc. in [16]
propose to generate system architectural view by using case
and sequence diagrams. They developed an appropriate tool,
yet this tool does not offer the possibility to construct initial
models and to receive graphical representation of results.

Studies of automatic class generation can be found in the
object-oriented development area as well. Attempts to receive
class diagrams from the requirements in natural language are
one of the popular lines of research. For example, the

Applied Computer Systems

2013/ 14__

28

approach LIDA [17], which proposes linguistic analysis of
system requirements with the help of developed tool. The
LIDA tool helps to perform analysis only, it generates nothing
but only has graphical representation of class diagram, where
all the elements are defined by the user. CM-Builder [18]
provides the method and the tool that generates classes,
attributes, associations and defines the multiplicity of
associations with the help of linguistic analysis of the
requirements. The methods and special kinds of relationships
– aggregation and generalisation are not generated with this
tool. NL-OOML [19] is another tool. It generates only classes
with the attributes and methods without any relationships.
GOOAL [20] is yet another tool based on linguistic analysis of
system requirements. It generates classes, attributes and
methods. GOOAL obtains associations with semi-formal
transformation and does not define special kinds of relations
such as aggregation and generalisation and multiplicity.
TRADE [21] is the approach, which provides model-to-model
transformation for class diagram generation. At the basis is the
requirements model, which consists of mission statement,
function refinement tree and use case model. TRADE
proposes a guided specification sequence diagram, and guided
translation to conceptual model. It receives classes, attributes,
methods, associations with multiplicity and aggregations, but
cannot define generalisations. TRADE announced tool
development, yet did not publish any outlines about it, thus the
tool is not available for download, either as a free or as a
commercial version.

Conference MODELS 2012 declares the workshop for
comparison of different modelling methods. It insists that the
problem of formal obtaining of the models and model
elements remains a topical issue and has not been solved yet.
But methods announced for this workshop relate to aspect-
oriented and service-oriented development areas. The methods
discuss the problem of system structure generation from this
point of view, for example [16] mentioned above or [22]
which provides an improved class diagram from some initial
class diagram. SBVR2UML [23] proposes transformation
from semantics of business vocabulary and rules to class
diagram with linguistic analysis. It generates all elements of
class diagram, and possesses a tool. All the above mentioned
methods except TRADE have appropriate tools. For initial
information they provide editor for textual requirements. CM-
Builder represent class diagram in textual way; LIDA, GOAL,
NL-OOML and SBVR2UML provide graphical representation
of generated class diagram. Two-hemisphere approach
proposes to generate elements of the class diagram from initial
two-hemisphere model. It has a tool, which provides the
possibility to create initial model and transform it into class
diagram in the formal way.

Table 4 shows comparative analysis of the two-hemisphere
approach to other methods and tools, described above. Part of
the criteria for comparison of methods is mentioned in [23] -
the core elements of class diagram, the rest is added to more
descriptive comparison.

TABLE 4.

COMPARISON OF 2HMD APPROACH TO OTHER MODELLING APPROACHES PROVIDING THE POSSIBILITY TO CREATE THE UML CLASS DIAGRAM

Method
Criteria

CM-
Builder

LIDA GOOAL NL- OOML SBVR2UM
L

TRADE 2HMD
approach

Initial information System
req-ts

System req-ts System req-ts System req-ts Semantics of
Business
Vocabulary
and Rules
specification

Requirements
model

Two-
hemisphere
model

Class diagram elements

Classes Yes Manually Yes Yes Yes Yes Yes

Attributes Yes Manually Yes Yes Yes Yes Yes

Methods No Manually Yes Yes Yes Yes Yes

Associations Yes Manually Semi-NL No Yes Yes Yes

Multiplicity Yes Manually No No Yes Yes Manually

Aggregation No No No No Yes Yes Yes

Generalization No No No No Yes No Yes

Transformation
base

Linguistic
analysis

Linguistic
analysis

Linguistic
analysis

Linguistic
analysis

Linguistic
analysis

Semi-formal
transformation
model-to-model

Formal
transformation
model-to-model

Tool support

Tool available Yes Yes Yes Yes Yes No Yes

Model editor for
initial information

Text
editor

Text editor Text editor Text editor Text editor -- Graphical editor

Graphical
representation of
class diagram

No Yes Yes Yes Yes -- Yes

Applied Computer Systems

__2013/ 14

29

The table shows, that methods are mainly based on the
linguistic analysis and pressure on the user to write
documentation in the defined form. It can cause the problems
associated with the quality of problem area description. E.g., it
may produce similar classes due to used synonyms, or
redundant relationships due to incorrect wordings. TRADE
[21] method proposes transformations from the initial models,
however, transformations cannot not be executed in full
automatic mode, and tool for TRADE has not been
announced. Two-hemisphere approach proposes formal
transformation to class diagram, which is based on the model
and is automated by the tool. The tool in this case solves the
problem of obtaining the system structure from initial
information of a system.

VI. CONCLUSION

The initial version of the two-hemisphere model-driven
approach gives the possibility to generate UML class diagram
from the two models – the business process model and the
concept model. This is a great benefit, because instead of
manual creation of the UML class diagram directly from
information about the problem domain based on the principles
of object-oriented analysis, the two-hemisphere model-driven
approach allows using already existing business artefact – a
business process diagram, which is widely used in many
enterprises, and the structure of information flows between the
processes is definable under description of user stories.

Therefore, the two-hemisphere model that is created with
minimal efforts and intuitively understood by customer can be
used for automatic generation of class diagram skeleton,
which can be later reviewed and used in software
development.

The main benefit of the approach improvement is in the
expansion of the set of generable elements of the UML class

diagram. The improved approach allows defining
generalisation and realisation relations. Another improvement
is that there are no more problematic processes requiring
additional decomposition of the customer. The improved
approach in the method signatures defining allows avoiding
this limitation. The next step of method improvement can
move the focus on to the study of class aggregation heuristics,
due to its ambiguity also under manual creation of the UML
class diagram. The authors suggest that the proposed matrix
can be useful for formalisation of the aggregation
identification.

Based on the analysis of obtained results the authors can
state, that the UML class diagram, generated with the
improved approach is closer to the “ideal” result than the
UML class diagram generated with the initial approach.
Actually it closely approached the possibility to use it in
software development.

Furthermore, comparison with other advanced approaches
for generation of the UML class diagram from some kind of
the presentation of problem domain shows the applicability
and appropriateness of the two-hemisphere model and its
supporting BrainTool in software development.

The future direction of the research could be to introduce all
the transformations offered in the paper into the next version
of BrainTool.

ACKNOWLEDGEMENTS

The research presented in the paper is partly supported by
the Grant of Latvian Council of Science No. 09.1269
"Methods and Models Based on Distributed Artificial
Intelligence and Web Technologies for Development of
Intelligent Applied Software and Computer System
Architecture".

REFERENCES
[1] J. Krogstie, “Integrating enterprise and IS development using a model

driven approach.” In: 13th International Conference on Information
Systems Development – Advances in Theory, Practice and Education.
Vasilecas O. et al. (Eds). Springer Science+Business media, Inc. 2005.
pp.43-53.

[2] O. Nikiforova and M. Kirikova, “Two-Hemisphere Model Driven
Approach: Engineering Based Software Development.” In: CAiSE 2004
16th International Conference on Advanced Information Systems
Engineering June 7-11, Proceedings, 2004, pp. 219-233.

[3] O. Nikiforova., “General framework for object-oriented software
development process” In: Scientific Proceedings of Riga Technical
University (13), 2002, pp. 132–144.

[4] O.Nikiforova, M.Kirikova, N.Pavlova, „Two-Hemisphere Driven
Approach: Application for Knowledge Modelling”, In proceedings of
the Seventh IEEE International Baltic Conference on DB and IS
(BalticDB&IS'2006), O. Vasilecas, J. Eder, A. Caplinskas (Eds.),
Vilnius, Lithuania, 2006, pp. 244-250

[5] O. Nikiforova and N. Pavlova “Development of the Tool for Generation
of UML Class Diagram from Two-Hemisphere Model.” In: Proceedings
of The Third International Conference on Software Engineering
Advances (ICSEA), International Workshop on Enterprise Information
Systems (ENTISY). Mannaert H., Dini P., Ohta T., Pellerin R. (Eds.),
Published by IEEE Computer Society, Conference Proceedings Services
(CPS), 2008, pp. 105-112.

[6] O. Nikiforova “Two Hemisphere Model Driven Approach for
Generation of UML Class Diagram in the Context of MDA”, e-

Informatics Software Engineering Journal - Volume 3, Issue 1, Huzar Z.,
Madeyski L. (eds.), Wrocław University of Technology, Institute of
Applied Informatics, Wrocław University of Technology, Wrocław,
Poland, Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej,
Wrocław, Poland, [Online]. Available: http://www.e-
informatyka.pl/wiki/e-Informatica_-_Volume_3, 2009, pp. 59-72.

[7] O. Nikiforova and N. Pavlova. “Open Work of Two-Hemisphere Model
Transformation Definition into UML Class Diagram in the Context of
MDA” In: Software Engineering Techniques, 3rd IFIP TC2 Central and
East European Conference on Software Engineering Techniques,
Revised Selected Papers, Huzar Z. et al (Eds.), LNCS Sublibrary: SL 2 –
Programming and Software Engineering, Springer, 2011, pp. 118-130.

[8] O. Nikiforova and N. Pavlova, “Foundations on generation of
relationships between classes based on initial business knowledge.” In:
Information Systems Development: Towards a Service Provision
Society. Springer US, 2009, pp. 289–297.

[9] O.Nikiforova, N.Pavlova and J.Grigorjev, “Several Facilities of Class
Diagram Generation from Two-Hemisphere Model” In: 23rd
International Symposium on Computer and Information Sciences (ISCIS
2008). Istanbul, Turkey, 27-29 October 2008, [Online]. Available:
http://ieeexplore.ieee.org/, 2008, pp.1-6.

[10] O.Nikiforova, “Object Interaction as a Central Component of Object-
Oriented System Analysis.” In: International Conference „Evaluation of
Novel Approaches to Software Engineering” (ENASE 2010),
Proceedings of the 2nd International Workshop „Model Driven
Architecture and Modelling Theory Driven Development”
(MDA&MTDD 2010), Osis J., Nikiforova O. (Eds.), Greece,
SciTePress. 2010, pp. 3-12.

Applied Computer Systems

2013/ 14__

30

[11] Website of BrainTool. [Online]. Available: braintool.rtu.lv/
[12] O. Nikiforova, N. Pavlova, K. Gusarovs, O. Gorbiks, J. Vorotilovs, A.

Zaharovs, D.Umanovskis, J. Sejans, “Development of the Tool for
Transformation of the Two-Hemisphere Model to the UML Class
Diagram: Technical Solutions and Lessons Learned”, Proceedings of the
5th International Scientific Conference „Applied Information and
Communication Technology 2012”, held on 26-27 April 2012, in
Jelgava, Latvia, 2012, pp. 11-19.

[13] G. Booch, “Object-oriented analysis and design with applications”,
Addison Wesley, 1986.

[14] J. Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, W Lorensen, “Object
Oriented modelling and design”, Englewood Cliffs: Prentice-Hall, Inc/,
New Jersey, 1991.

[15] P.P. Chen, “Historical Events, Future Trends, and Lessons Learned.”
Software pioneers, Springer-Verlag New York, Inc. New York, 2002,
pp. 296 – 310.

[16] A.Navasa, M. A.Pérez-Toledano, J. M. Murillo, “An ADL dealing with
aspects at software architecture stage” Information and Software
Technology 51, 2009, pp. 306–324.

[17] S.V.Overmyer and O.Rambow, “Conceptual Modelling through
Linguistics Analysis Using LIDA.” 23rd International Conference on
Software engineering, July 2001.

[18] H. M. Harmain and R.Gaizauskas “CM-Builder: A Natural Language-
Based CASE Tool for Object- Oriented Analysis.” Automated Software
Engineering. 10(2), 2003, pp.157-181.

[19] G.S.Anandha, G.V. Uma “Automatic Construction of Object Oriented
Design Models [UML Diagrams] from Natural Language Requirements
Specification” PRICAI 2006: Trends in Artificial Intelligence, LNCS
4099/2006, 2006, pp. 1155-1159.

[20] H. G. Perez-Gonzalez and J.K. Kalita, “GOOAL: A Graphic Object
Oriented Analysis Laboratory.” 17th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA '02), NY, USA, 2002, pp. 38-39.

[21] E.Insfrán, O.Pastor, and R.Wieringa, “Requirements Engineering-Based
Conceptual Modelling.” Requir. Eng., 7, 2002 pp. 61-72.

[22] A.Hovsepyan, S.Baelen, Y.Berbers and Joosen W., “Generic Reusable
Concern Compositions.” In Proceedings of the 4th European conference
on Model Driven Architecture: Foundations and Applications (ECMDA-
FA '08), Ina Schieferdecker and Alan Hartman (Eds.). Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 231-245.

[23] H.Afreen, I.S.Bajwa, B.Bordbar, "SBVR2UML: A Challenging
Transformation," fit, 2011 Frontiers of Information Technology, 2011,
pp.33-38.

Oksana Nikiforova earned her Ph.D. in information technologies (system
analysis, modelling and design) in Riga Technical University, Latvia, in 2001.
At present, she is Full Professor at the Department of Applied Computer
Science, Riga Technical University, where she has been studying and working
since 1999. Her current research interests include the object-oriented system
analysis and modelling, with special focus on the issues in the framework of
Model-driven Software Development (MDSD). She has published widely in
these areas and has been awarded several grants. She participated and
managed several research projects related to system modelling, analysis and
design, as well as participated in several industrial software development
projects.
She is member of RTU Academic Assembly, Council of the Faculty of
Computer Science and Information Technology, RTU Publishing Board, RTU
Scientific Journal Editorial Board, etc. She co-chairs the workshops focused
on MDSD – MDA 2009 in conjunction with ADBIS, MDA&MTDD 2010 and
MDA&MDSD 2011 in conjunction with ENASE. She was awarded a RTU
Young Scientist of the Year 2009.
E-mail: oksana.nikiforova@rtu.lv

Konstantins Gusarovs took master's degree in computer systems in Riga
Technical University, Latvia, in 2012.
At present he is scientific assistant at the Department of Applied Computer
Science in Riga Technical University.
He is Java developer in Forticom Ltd. His current research interests include
object-oriented software development and automatic obtaining of program
code.
E-mail: konstantins.gusarovs@gmail.com

Olegs Gorbiks took his master's degree in computer systems from Riga
Technical University, Latvia in 2012.
Currently, he is the first year Ph.D. student and scientific assistant at the
Department of Applied Computer Science, Riga Technical University.
He is PHP developer in Ambergames Corp . His current research interests
include object-oriented software development and automatic obtaining of
program code.
E-mail: olegs.gorbik@rtu.lv

Natalja Pavlova earned the Ph.D. degree in information technologies (system
analysis, modelling and design) from Riga Technical University, Latvia in
2008.
Currently she is leading researcher at the Department of Applied Computer
Science, Riga Technical University, where she studied and worked since
2003. For two years she worked as programmer and for five years as software
quality assurance specialist. Her current research interests include system
analysis and design, object-oriented software development and automatic
obtaining of system models and program code. She has published widely in
these areas and has been awarded several grants. She has participated in
several industrial software development projects.
E-mail: natalja.pavlova@rtu.lv

