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Abstract – This paper focuses on the experimental analysts of 
Contract NET protocol for Multi-Robot task allocation. The 
problem domain consists of multiple vacuum cleaning robots that 
need to cooperate for cleaning an area that is beyond the 
capabilities of a single robot. A robot simulator has been used to 
experiment with various area and robot locations, and the 
summary of the effort required to process the tasks has been 
recorded. Experimental results show that using Contract NET 
protocol alone is not sufficient to achieve optimal results in task 
allocation. A more advanced strategy with or without involving 
the Contract NET protocol is required. Possible strategies are 
outlined and their analysis is the subject of the future work. 
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I. INTRODUCTION 

Autonomous agents have to share tasks and allocate them to 
the most appropriate agents without help of any third parties in 
order to be capable to execute tasks that can not be done by a 
single agent. Agents have to decompose tasks and find other 
agents that are capable of execution of the subtasks. 
Corresponding communication mechanisms or high level 
interaction protocols are used to find appropriate agents and 
allocate tasks to them. To fit needs of different domains, 
various interaction protocols have been developed for task 
allocation in multi-agent systems. Some of them are built for 
specific domains, like the monotonic concession protocol and 
the corresponding Zeuthen strategy [1] for task oriented 
domains where agents have to reallocate a set of tasks. Such 
protocols can not be used in more general situations. Other 
mechanisms are designed for more general situations where an 
agent needs to allocate some task to the most suitable agent. 
Examples of such protocols are different kinds of auctions like 
English auction, Dutch auction, first-price sealed-bid auction 
and Vickrey auctions [2], and a Contract NET interaction 
protocol. English auction, Dutch auction and Contract NET 
protocols have been formally specified as interaction protocols 
by Foundation of Intelligent Physical Agents (FIPA) [3] and 
used in practical applications. 

The Contract NET protocol has several advantages over 
other protocols. Firstly, it allows finding an agent that is the 
most suitable for the task. Secondly, it is the only protocol that 
has been accepted as a standard by FIPA and no longer has 
experimental status [3]. Thus, it is standardized, widely used 
and well known to the developers of multi-agent systems. 
Additionally, it is reliable in the sense that if an individual 
agent becomes unavailable, the task can be easily reassigned 
to another agent [4]. 

Still, it is not clear whether the Contract NET protocol will 
achieve globally optimal solution in real environments where 
tasks have long execution times, because if a contract is made 
about one subtask the corresponding agent is not available for 
the corresponding time despite that some other subtasks may 
need it more. There are no practical analyses about usage of 
Contract NET in multi-robot task allocation. Thus, the aim of 
the paper is to analyse the results achieved by Contract NET 
protocol in the multi-robot task allocation in a specific domain 
of vacuum cleaning robots. A set of vacuum cleaning robots 
widely used as single robots are joined in a multi-robot system 
that is capable to clean larger premises than a single robot [5]. 
The following problem is analysed in the paper. The manager 
agent (the initiator of the interaction) receives the task to clean 
some area. It decomposes the whole task into subareas to be 
cleaned by certain robots. Tasks have to be assigned to robots 
in a way to minimize the total cleaning effort required. Thus, 
there is a need for appropriate task allocation strategy. We do 
experiments with the Contract NET protocol and analyse 
efficiency of task allocation in various situations.  

The analysis is performed in the prototype of the multi-
robot management system being built for management of 
multiple Roomba vacuum cleaning robots [6]. The current 
version of the system consists of three layers. Firstly, the 
lower layer is a virtual environment imitating a set of vacuum 
cleaning robots. Secondly, the middle layer or a mediator is 
introduced to separate the logical part of the system and 
physical robots, allowing easy substitution of robots by the 
virtual environment used in practical experiments. Thirdly, the 
logical layer is implemented as a multi-agent system. Each 
robot is managed by a corresponding agent, resulting in 
autonomous entities that consist of robot together with the 
corresponding agent. The user gives task to the manager agent 
and task allocation is done by agents. As a consequence, the 
experiments are concerned with the third layer and multi-agent 
system. 

The remainder of the paper is organized as follows. The 
Section 2 introduces the background of the research. It 
introduces to the multi-robot task allocation problem and the 
Contract NET interaction protocol. The related work is 
outlined in the Section 3. The Section 4 describes the setup 
used for the experimental analysis. The results of the 
experiments are given in the Section 5 and analysed in the 
Section 6. The Section 7 concludes the paper and outlines the 
main directions of the future work. 
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II. BACKGROUND  

A. Multi-Robot Task Allocation 

During the last decades a significant shift of attention has 
been made from single robot systems to multi-robot systems 
[5], [7], [8]. There is a need not only to coordinate a few 
robots, but also large groups of probably heterogeneous robots 
[9]. Centralized approaches fail in case of large groups. As a 
result, decentralized multi-robot coordination has become an 
actual problem. One of the main coordination problems is to 
find appropriate robots for each task and allocate tasks to 
them. 

Various multi-robot task allocation mechanisms exist. Some 
of them are adopted from multi-agent system theory, while 
others have been developed specially for multi-robot systems. 
Well known examples of multi robot task allocation protocols 
are TraderBots [10] and Murdoch [9]. The Murdoch 
concentrates on the message addressing. It proposes to address 
messages by task that is offered for execution. It simplifies 
finding appropriate robots to offer tasks to by sending a 
message to robots that are capable to execute exactly the 
needed task. Unfortunately, the approach does not deal with 
optimal task allocation. The choice of the robot to allocate the 
task is left on the initiator of the protocol. The Murdoch can be 
considered a solution for finding appropriate robots to start 
negotiations and allocation not the solution to optimal task 
allocation. 

The TraderBots approach is an example of economics-
based task allocation mechanisms. It is based on the idea that 
each individual robot maximizes its profit. Individual robots 
have the rights to choose either to execute task by themselves 
or become contractors and offer their tasks to other robots 
(bidders) that can submit bids with the reward that they agree 
to execute the task for. If the reward submitted by any bidder 
is smaller than the costs for the contractor to execute the task, 
the task is awarded to the bidder for the amount of its bid. 
Thus, the task allocation can be done in the following way. 
Firstly, the tasks are allocated using greedy task allocation. 
Afterwards, robots may trade tasks to each other enabling the 
system to change the allocation if it is not optimal. In case of 
large groups of robots this will result in a need for large 
amount of communications to find out if there is any agent 
that is willing to bid for every task. 

A specific direction of multi-robot systems is swarm-like 
systems that use ideas of emergent cooperation (one of the 
first works is [11]). In such systems group-level cooperative 
behaviour emerges from their interactions with each other and 
the world. An emergent system can be effective and is simple 
and elegant solution to a problem. However, emergent 
cooperation solutions have traditionally been applied to 
extremely large, homogeneous robot groups. These techniques 
are a poor fit for small- to medium-scale systems [9]. 

Autonomous agents and robots have similarities in the sense 
that task allocation is usually done in a decentralized manner. 
Thus, the above described task allocation mechanisms for 
multi-agent systems are used to allocate tasks in multi-robot 
systems. Example of the multi-agent task allocation protocol 

used in multi-robot systems is a Contract NET interaction 
protocol [13]. The main limitation of the multi-agent 
mechanism usage is the uncertainty if the protocols designed 
for software environments and usually tested in determined 
and discrete environments work well in real environments of 
multi-robot systems. 

B. Contract NET Protocol 

The Contract NET protocol is an interaction protocol for 
task allocation. It is used by one agent, named the initiator, 
which wishes to have some task performed by one or more 
other agents, named the participants. The initiator is a manager 
that is willing to optimise a function that characterizes the 
task. This characteristics is commonly expressed as the price 
in some domain specific way. It can also be soonest time of 
completion, fair distribution of tasks, or any other domain 
specific characteristics. For a given task, any number of 
participants may respond to a proposal.  

Originally the Contract NET was proposed in 1980 by R.G. 
Smith [14]. In 2002 the protocol was standardized by FIPA 
[13]. The standardized and nowadays widely used version is 
slightly modified by adding rejection and confirmation 
communicative acts to inform participants about rejection and 
acceptance of the proposal. 

This standard version of the protocol is identified by the 
token fipa-contract-net as the value of the protocol parameter 
of the Agent Communication Language (ACL) message. The 
flow of the protocol is the following (See Figure 1 for the 
UML protocol diagram). The initiator asks for proposals from 
other agents by issuing a Call for Proposals (CFP) that 
specifies the tasks and any additional conditions for its 
execution. Participants receiving the CFP are potential 
contractors and can submit their proposals to perform task that 
includes preconditions of the execution of the task like price, 
time when the task will be done or any other precondition. 
Alternatively, agents may refuse. As soon as the deadline 
passes, the initiator evaluates the received proposals and 
selects agents to perform the task. It can choose one, several or 
none if there are no satisfactory proposals. The agent(s) of the 
selected proposal(s) will be sent acceptance notification, and 
the remaining agents will receive rejections. As soon as the 
initiator accepts the proposal, the participant has a 
commitment to carry out the task, i.e. the proposal is binding 
to the participant. After completing the task the participant 
sends the completion message to the initiator that can be either 
information that the task is done or include also results of the 
task. In case of failure corresponding message is sent. 
Additionally, not-understood messages can be sent at any 
moment of the protocol in case the agent did not understand 
the previous message [13]. 

In general the Contract NET protocol allows finding the 
most suitable agent for a single task by comparing proposals 
submitted by agents. Still it is not clear how to use it optimally 
for multiple tasks at the same time. Additionally, the Contract 
NET protocol is built for multi-agent systems. It is not clear 
how it will work in different domains with robots working in 
physical environment. 



 Applied Computer Systems 
 

2012 / 13______________________________________________________________________________________________  
 

8 
 

 
Fig. 1. The interaction diagram of the Contract Net protocol [13] 

III. RELATED WORK 

The Contract NET protocol and its modifications are widely 
used in different application domains, for example, 
manufacturing systems [16], resource allocation in grid and 
sensor web environments, as well as in hospitals [17], [18], 
[19], electronic marketplaces [20], vehicle scheduling [21], 
power distribution network restoration [22], etc. It has become 
both de facto and formal standard of task allocation protocols. 
The wide application of the Contract NET protocol has led to 
the situation where major agent development platforms like 
JADE offer libraries with implementation of the Contract NET 
protocol facilitating practical usage of the protocol [15]. 
Various analyses of the Contract NET protocol applications 
have been carried out, too. 

Dellarocas and Klein have analysed usage of the Contract 
NET protocol together with electronic social institutions to 
help guarantee stability and efficiency of interactions [20]. 
The authors analyse the possibilities to increase quality of 
service and decrease communication overhead instead of 
analysing the resulting task allocation. Additionally, it 
concentrates on tasks done by agents, not physical robots. 

Different algorithms for task allocation inside the Contract 
NET interaction protocol have been analysed in grids. The 
optimality of task allocation is analysed in virtual environment 
of resources and users. Criteria like price paid, success rate 
and load balancing are used to analyse different algorithms 

that the initiator may use for choosing the appropriate 
participant to allocate the task to. It has been concluded that 
methods for choosing the winning bid can improve values of 
the abovementioned criteria [18]. 

Contract NET protocol has been applied to systems of 
physical robots. Mostly it is done with some modifications. A 
well known modification of the Contract NET is the 
abovementioned Murdoch protocol that modifies the 
addressing of the agents by the tasks they are capable to carry 
out [9]. Another study is done by Golfarell and colleagues. 
They have analysed a Contract NET based approach for task 
swapping among robots. The effectiveness has been analysed 
in terms of utility and complexity of interactions. Still, this 
analysis concerns only the case when each robot already has 
some tasks allocated to them and they need to swap tasks so 
that both robots get more suitable tasks to them [23]. 

The Contract NET protocol has been analysed in various 
other aspects. Analysis with respect to the message semantics 
and possible states of Contract NET based interactions is done 
by Paurobally and Cunningham [24]. Usage of instance-based 
learning has been analysed to improve the performance of the 
multi-agent system. It is analysed how the scalability issues of 
the Contract NET protocol can be solved by this learning 
method [19]. Kodama and colleagues have used genetic 
algorithms for agents to learn parameters to determine what 
contracts should be preferred [22]. Another solution to 
limiting the complexity of communications and improving 
scalability is the MACRO approach [17]. It introduces broker 
agents that make allocation of the hierarchically decomposable 
tasks more effective. The effectiveness of the approach is 
experimentally proven. Nevertheless, this approach is meant 
for agents whose capabilities have constant geographical 
location as it is in the sensor web. 

Still, to the authors’ knowledge, there is no analysis on how 
the Contract NET will operate in the environment of the multi-
robot systems with homogenous robots and different-sized 
tasks of the same type. Thus the paper analyses the 
appropriateness of the Contract NET protocol to task 
allocation in such multi-robot systems; in particular it analyses 
task allocation to multiple vacuum cleaning robots. 

IV. SETUP FOR EXPERIMENTAL ANALYSIS OF TASK 

ALLOCATION 

A. Problem Domain and Problem Statement for Multi-Robot Task 
Allocation 

Problem domain for multi-robot task allocation is vacuum 
cleaning. Single vacuum cleaning robots are good for cleaning 
relatively small areas such as hotel-rooms, whereas areas such 
as warehouses and hangars are beyond the capabilities of a 
single robot – it may take too much time and/or resources to 
clean that sort of area by a single vacuum cleaning robot. That 
is why multiple vacuum cleaning robots must be introduced to 
complete such vacuum cleaning tasks. The whole area must be 
split into smaller ones and each of the smaller areas must be 
assigned to an individual vacuum cleaning robot. 

This leads to a situation when there are multiple tasks and 
multiple robots in the system. As soon as there is more than 
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one task and/or more than one robot capable of completing 
such a task, one must use a task allocation strategy to assign 
tasks to robots in a way to maximize the expected 
performance. Hence, the term optimal task allocation is 
introduced. A solution is optimal if there is no better solution 
given to all the information available in the system [9]. 
Obviously an optimal solution gives maximum expected 
performance. In vacuum cleaning problem domain the optimal 
solution is the one that minimizes the effort required for 
cleaning an area. In this particular case the effort can be 
measured as the sum of distances traveled by vacuum cleaning 
robots. Since the distance traveled while cleaning may depend 
on several factors not directly related to the task allocation 
(such as the amount of dirt on the floor), the only thing that 
matters is the distance a vacuum cleaning robot travels from 
the moment a task is allocated to it, till it reaches the assigned 
area to clean and starts the cleaning process.  

This allows the formulation of the problem statement for 
the optimal task allocation in a particular vacuum cleaning 
domain: given a set of areas (a set may be obtained splitting a 
larger area into smaller ones) to clean, and a set of robots 
capable of cleaning an area, allocate each area to a robot in a 
way that the summary distance traveled by robots among areas 
to clean is minimized. This formulation respects the Multi-
Robot Task Allocation (MRTA) definition given in [9]. 

B. Multi-Agent System Architecture for Multi-Robot System 
Management 

Each vacuum cleaning robot has its own algorithm for 
cleaning the area, and it is assumed here that this algorithm 
fits its purpose. Nevertheless, robots lack social capabilities 
and it is impossible to assign only a part of area to a specific 
robot. To overcome this issue and unite the individual robots 
in a multi-robot system, the authors of the paper introduce 
multi-agent system architecture for multi-robot system 
management. Robots use their own built-in algorithms for area 
cleaning, and the purpose of the multi-agent system is only to 
specify which area has to be cleaned by which robot. 

Multi-agent system architecture consists of three layers – 
the robot layer, the mediator and the multi-agent system. At 
the bottom of the layer hierarchy there is the (vacuum 
cleaning) robot layer. Robots receive commands from the 
mediator and periodically report their current status 
(coordinates, sensor data, etc.) to the mediator. Application 
logic (such as task allocation) is not included in this layer – it 
is only responsible for communication between the mediator 
and the robots themselves. Robot-specific logic and data are 
used in this layer. 

Multi-agent system layer is responsible for management of 
robots and consists of four types of agents namely: robot, 
manager, gateway and user interface (UI) agents. There is 
exactly one UI, manager and gateway agent in the multi-agent 
system, while the robot agent count is equal to the count of the 
physical robots. The UI agent represents the user in the multi-
agent system and is described in detail in the next subsection. 

Manager agent is responsible for task decomposition and 
task allocation to robot agents. It receives an area cleaning 
request from the UI agent, splits the area into smaller ones if 
necessary (according to the size of area) and uses the Contract 
NET protocol to allocate each of the resulting areas as tasks to 
robot agents. The process of task allocation using Contract 
NET protocol is described in detail in Subsection D of this 
section. 

The robot agents represent physical robots in the multi-
agent system. They participate in contract NET negotiations 
issued by the manager agent and send appropriate commands 
to the robot they represent. 

Mediator layer provides mapping between the multi-agent 
system layer and the robot layer. It ensures encapsulation of 
robot layer specific details from the multi-agent system, as 
well as the separation of multi-agent system specific logic and 
data from the robot layer. 

The multi-agent system architecture is implemented in the 
following way. The multi-agent system layer is implemented 
in JADE. The gateway agent of the multi-agent system layer 
contains a simulator of the mediator layer which is 
implemented in Java. The mediator layer simulator also 
includes a vacuum cleaning robot simulator. 

C. Graphical User Interface 

Choosing JADE as an agent development framework, it 
makes Java-based graphical user interface (GUI) development 
frameworks more favorable, because another JADE platform 
could be integrated into GUI in order to connect to the main 
platform. There is a wide variety of such GUI frameworks like 
Netbeans, Java’s built-in Swing, Eclipse, and many others. 
The decision was in favor of Eclipse, because of a rich set of 
ready to use components, its extensibility, rich documentation, 
project maturity, and developer experience. 

In order to build map viewer, Eclipse’s Graphical Editing 
Framework (GEF) [25] has been chosen over Draw2D 
framework because GEF uses model-view-controller design 
pattern and provides a means to update the view depending on 
model changes in an efficient way – only those parts of view 
are updated, which have been changed. 

The concept of map composition basically is the same with 
some minor differences between different areas of application: 
 Map consists of several ordered layers 
 Layers contain elements of the same type 
 Elements of latter layers overlay the elements of the first 

ones 
These common aspects have led to an initiative to build an 

extensible map viewing framework, where a robot map viewer 
will be only one of the implementations. Common application 
domain allows avoiding implementing the same parts of 
system (like change event propagation, property viewing, 
some viewer parts, etc.) over and over, while delegating plug-
in to handle specific tasks such as connecting to information 
source, committing changes to map, updating model, and 
providing custom figures. As a result GUI project has been 
split into several parts: 
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Fig. 2. Mapclipse GUI with vacuum cleaning robot map plug-in 

 
 Model class definition that would support class property 

change event propagation 
 Generalized map drawing framework core called 

“Mapclipse” that reflects the state of model in GUI 
 Example map plug-in used while developing a core 

framework and customized figures of robot map plug-in 
 Vacuum cleaning robot map plug-in, which connects to 

main JADE platform, populates the model, and 
customize the figures to its needs. 

This project breakdown turned out to be very convenient, 
because GUI developer could implement, test and debug a 
core framework and customized figures using an example map 
plug-in of which he had a higher degree of control. Other 
benefits of using the example plug-in include simulating 
different model states, faster system startups during GUI 
development (no need to run main JADE platform), and 
focusing merely on GUI development while leaving JADE 
specifics aside which improved developer productivity. 

Figure 2 shows the Mapclipse with vacuum cleaning robot 
map plug-in. On the left side there is map information – list of 
layers and their elements. Below the map list there is the 
properties view that shows the state of the selected element. In 
the map viewer (editor area) there can be seen two robots and 
two areas that are assigned to them for cleaning. The area 
between the assigned areas (one large area created by a user 
but split between robots according to an inner algorithm) is 
going to be assigned for cleaning right after one of the robot 
finishes the currently assigned area. The lowest area is created 
by a user, but not yet sent to a multi-agent platform for 
processing. 

The list of possible application areas of Mapclipse is very 
wide, for example, robot self-localization sensory data 
merging visualization where different layers represent 

information gathered from laser sensors, odometer sensors, 
GPS, etc. 

Mapclipse supports simultaneous use of different map 
providers. For example, using robot map plug-in, more than 
one connection to different main platforms can be established 
meanwhile viewing information about robot self-localization 
status. 

D. Contract NET as the Task Allocation Strategy 

Contract NET protocol is used in the multi-agent system 
layer to allocate tasks to agents. Manager agent plays the 
initiator role and robot agents play the participant roles. When 
a new request for cleaning an area is received by the manager 
agent, it is processed in the following way. First of all, the 
manager agent uses geometric transformations to split the 
initial area into smaller ones in such a way that each of the 
resulting areas can be processed by a single vacuum cleaning 
robot. Next, the manager agent starts the contract NET 
protocol on each of the resulting areas. Robot agent who 
proposes the lowest price for cleaning the area wins. It then 
travels to the area and starts cleaning it. When area cleaning is 
complete, robot agent informs the manager agent. When all 
sub-areas of the initial area are cleaned, the manager agent 
responds to the UI agent’s initial request to indicate the 
success (or failure) of the operation. 

Contract NET on each area is done independently of others 
and the order of the contract NETs is not defined – each area 
is assumed to be a separate task. When the robot agent 
receives a call for proposal on a specific area, it sends the 
proposal only if it is not currently executing a task, otherwise 
it sends a refuse message. 

  



Applied Computer Systems 

_______________________________________________________________________________________________2012 / 13 

11 
 

1

A B C

 

Fig. 3. Setup for the first experiment – one agent and three areas to clean 

 

Fig. 4. First experiment in progress. Robot agent is processing the second area. The first area is already processed, while the third area is yet to-be processed 

 

Fig. 5. Setup for the second experiment – two robots and two areas to clean 

 

Fig. 6. Second experiment in progress. Robot 1 processing the first area, while robot 2 is processing the second one 
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V. EXPERIMENTS AND THE RESULTS 

The purpose of experiments is to empirically test various 
combinations of robot and area cleaning task placements and 
to record the distance traveled by robot agents among the 
tasks. This data can be analyzed to determine how optimal the 
task allocation is by using contract NET protocol. 

It is given that a robot agent has reached an area to clean, 
when it has reached the center of that area. Distance between 
the tasks is measured as the distance between the center 
coordinates of the appropriate areas to clean.  

A. One Agent, Multiple Tasks 

The first experiment has been conducted with one agent and 
multiple areas to clean (tasks) (see Figure 3). 

It is not hard to see from the Figure 3, that the logical order 
of cleaning areas (the optimal task allocation) is A  B  C. 
Given that initial x and y coordinates of the robot are (10, 25) 
and the center coordinates of areas A, B and C are respectively 
(45, 25), (85, 25) and (125, 25) then the distance robot has to 
travel among the areas is 30 + 40 + 40 = 110 units. This 
calculation is done assuming the robot is in the center of the 
area, when it is finished to clean it. In reality, the robot can be 
at any point of the given area and there is no way to predict 
this point for sure, because no details of the internal cleaning 
algorithm supplied by the robot manufacturer are given. 
Therefore the term predicted distance is introduced to denote 
the theoretically calculated distance. Similarly, the term 
observed distance denotes the actual distance measured in 
practical experiments. 

Since the order of the Contract NETs is not defined, any of 
areas A, B or C could be auctioned and thus processed first. 
The same is also true for the second and third area, which 
means there are 6 possible area processing combinations, i.e. 
A  B  C, A  C  B, B  A  C, B  C  A, C  A 
 B and C  B  A. Practical experiments have been 
conducted to measure the observed distance for each of these 
combinations (see Fig. 4). Ten experiments have been 
conducted for each of the combinations and the average values 
of traveled distances have been calculated. The optimal 
combination A  B  C has showed the average observed 
distance of 132 units taken as a baseline. The rest of results are 
shown in Table I. 

 

TABLE I 

OBSERVED DISTANCES OF VARIOUS PROCESSING COMBINATIONS 

Processing combination Observed distance Difference from baseline % 

A  C  B 164 24 

B  A  C 197 49 

B  C  A 214 62 

C  A  B 232 76 

C  B  A 212 61 

B. Two Agents, Two Tasks 

The second experiment has been conducted with two agents 
and two tasks as shown in Figure 6. 

Center coordinates of agent 1 are (10, 25), while the center 
of agent 2 lies at (70, 25). Center coordinates of areas A and B 
are respectively (45, 25) and (105, 25). The optimal task 
allocation would be that agent 1 goes A and agent 2 goes B (1 
 A, 2  B). This gives the predicted distance of 35 + 35 = 
70 units, and this is what happens when the area B is 
auctioned first. But, since the order of Contract NETs is not 
defined, there could easily be a situation when A is auctioned 
first and B is auctioned second. Agent 2 is closer to A than 
agent 1, so agent 2 would win a Contract NET for the area A, 
while agent 1 would win a Contract NET for the area B (since 
agent 1 is busy with A and would send a refuse message to an 
auction of the area B). The predicted distance in this case (1 
 B, 2  A) is 95 + 25 = 120 units, which exceeds the 
predicted distance in the optimal case (1  A, 2  B) by 
71%. Practical experiments (see Fig. 6) show that the observed 
distance and predicted distance in both cases are equal since 
there is no uncertainty involved by the robot internal cleaning 
algorithm, as in the first experiment. 

VI. ANALYSIS OF EXPERIMENTAL RESULTS 

Experimental results show that the difference in the 
observed distance between the optimal task allocation and task 
allocation in a particular vacuum cleaning domain, using 
separate Contract NETs in undefined order, can vary from 
24% to 76%. It means that the applied task allocation strategy 
is far from optimal. Several problems can be observed here. 

First problem lies in the fact that the order of Contract 
NETs is not defined. For a single robot and multiple task case 
(the first experiment) it means that a robot will go to the area 
which is auctioned first independently of the distance between 
the current location of robot and the area. This leads to 
situations when the robot goes to the farthest possible area, 
while there are other areas closer to the current location of the 
robot. For the second experiment, where the number of areas 
and the number of robots match, it is possible that only a local 
maximum in optimality could be reached. If the initiator of a 
Contract NET does not have a clue about other areas to clean 
(or behaves like it does not have), it may assign a robot to an 
area closest to that robot (which gives local optimum), but it 
does not take into account the other robot who may be further 
away from that area, but assigning the other robot to that 
specific area could lead to a global optimum. 

The second problem arises from the fact that each of the 
tasks is considered to be a separate entity not related to others. 
This problem can be thought of as the cause of the first 
problem. For example, if the three tasks in the first experiment 
were considered subtasks of a larger (possibly abstract) task, it 
might be possible to predefine the order of Contract NETs 
while looking, as well as the whole picture. Similarly, the 
order of the Contract NETs could be predefined in the second 
experiment, if both areas were considered parts of a larger 
task. This way a global optimum could be achieved instead of 
local one. 

Although experiments may seem trivial at first, they 
illustrate basic problems faced when allocating tasks to 
multiple robots executing spatially distributed tasks. Situations 
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described here are considered to be the basic building blocks 
of which more complex situations consist. Example of such a 
situation is the case involving multiple robots and multiple 
tasks. 

VII. CONCLUSIONS AND FUTURE WORK 

Analysis of experimental results leads to a conclusion that 
Contract NET protocol works very well if the tasks are 
interdependent and the order of their execution is negligible. 
This, however, is not the case with a multi-robot system 
consisting of vacuum cleaning robots, which process area 
cleaning tasks. Results show that the order of task execution 
matters – the distance traveled by robots among the tasks 
varies up to 76% depending on the order of task execution. In 
addition, the connection among different tasks can not be 
ignored, since the areas lie in the physical coordination space 
and are related to each other. These relations among areas may 
define the optimal order of task execution and are thereby an 
important part of task allocation. 

This indicates the need for additional task allocation 
strategies in cooperation with the applied Contract NET 
protocol. The Contract NET protocol serves its purpose well – 
it allocates a task to a robot that gives the best bid. The actual 
problem is to determine the order of task auctions with respect 
to their relationships. The next paragraph indicates possible 
solutions which are the subject of our future work. 

One of the possible solutions is to sequentially assign tasks 
using Contract NET protocol as done before. Then, instead of 
starting the execution tasks immediately, robots perform an 
additional negotiation among themselves. The purpose of such 
negotiation is to exchange tasks assigned by the Contract NET 
protocol to achieve the optimal result. If two robots determine 
that by exchanging their current tasks, they will get higher 
expected performance, and they perform the exchange. This 
way the initial task allocation (before the exchange) does not 
really matter – the tasks could be simply assigned randomly 
and then all responsibility is shifted to the negotiations among 
the robots. 

Another possible solution is to modify Contract NET 
protocol in a way that tasks are assigned iteratively. Each 
robot is asked for the price of completion of each task. When 
the initiator receives all possible bids, it then selects a 
combination of bids that give maximum expected performance 
and accepts them, while rejecting the rest. 

Another alternative is to auction all available tasks at once. 
The robots then bid for specific combination of tasks and the 
best bid is then accepted by the auction initiator, who assigns 
the appropriate tasks to the highest bidder. 

All the mentioned alternatives have their positive sides and 
their downsides. Their identification as well as the analysis is 
the subject of our future work. 
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