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Abstract

Background: Leptospirosis, caused by pathogenic Leptospira spp., is a widespread zoonotic disease worldwide. Early 
diagnosis is required for proper patient management and reducing leptospirosis morbidity and mortality.
Objective: To summarize current literature regarding commonly used and new promising molecular approaches to 
Leptospira detection and diagnostic tests of human leptospirosis.
Method: The relevant articles in Leptospira and leptospirosis were retrieved from MEDLINE (PubMed) and Scopus.
Results: Several molecular techniques have been developed for diagnosis of human leptospirosis. Polymerase chain 
reaction-based techniques targeting on either lipL32 or 16S rRNA (rrs) gene are most commonly used to detect 
leptospiral DNA in various clinical specimens. Whole blood and urine are recommended specimens for suspected 
cases in the first (acute) and the second (immune) phases, respectively. Isothermal amplification with less expensive 
instrument is an alternative DNA detection technique that may be suitable for resource-limited laboratories.
Conclusion: Detection of leptospiral DNA in clinical specimens using molecular techniques enhances sensitivity for 
diagnosis of leptospirosis. The efficient and robust molecular detection especially in the early leptospiremic phase may 
prompt early and appropriate treatment leading to reduced morbidity and mortality of patients with leptospirosis.
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Leptospira and leptospirosis

Pathogenic Leptospira spp. are causative agents of human lep-
tospirosis, a neglected zoonosis [1, 2]. The genus Leptospira 
is composed of pathogenic and saprophytic members which 
can be further classified into at least 20 species, 25 serogroups, 
and more than 250 serovars [2, 3]. The bacteria share conser-
ved genetic sequences which can be used for the detection of 
pathogenic Leptospira [4]. The pathogens infect and persist 
chronically in the kidney of reservoir hosts before getting 
excreted into their urine and contaminating surrounding 

environment [5]. Leptospirosis has a globally widespread dis-
tribution but it is mostly endemic in tropical and subtropical 
regions [2, 6]. The disease typically affects poor living popula-
tions in urban slum and agricultural workers in endemic areas  
[7, 8]. The climate changes with heavy rainfalls and floods, and 
uncontrolled broaden of slum societies increase the number of 
leptospirosis cases [9–11]. Approximately 1 million cases of 
leptospirosis with 5%–10% fatal rate per year are estimated 
worldwide [12].

Humans are mainly infected by exposure to urine of 
infected animals or contaminated environments [1, 2]. The 
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clinical manifestations of leptospirosis range from milder 
anicteric leptospirosis to severe illness called icteric leptos-
pirosis or Weil’s disease. In the mild form, patients present 
with acute undifferentiated fever, that is mild flu-like illness 
similar to other tropical infectious diseases such as malaria, 
dengue fever, enteric fever, typhus, influenza, and hepatitis 
[1, 13, 14]. Severe cases may present with multi-organ failure, 
such as jaundice, renal failure, lung hemorrhage, and septic 
shock [7, 15]. Prompt antibiotic treatment can reduce bacte-
rial burden in patients. Inaccurate or delayed diagnosis leads 
to serious complications or even fatality. Currently, several 
diagnostic methods including direct examination with dark-
field microscopy, culture, serological tests, and genomic 
DNA detection by molecular methods have been utilized by 
diverse laboratories based on their resource settings [3, 15]. 
This review provides updated information of leptospirosis 
diagnostic assays, especially rapid identification of pathoge-
nic Leptospira by molecular techniques in the acute phase of 
infection.

Types of clinical specimens

Anicteric leptospirosis usually presents as a biphasic illness, 
i.e., the primary septicemic phase during the first week of 
infection followed by the secondary immune phase [1, 2, 16].  
After acquisition through cracked skin or mucous memb-
rane, pathogenic Leptospira disseminate and survive in the 
bloodstream [17, 18]. Leptospira may be detected in the 
blood during the leptospiremic phase within a few days post 
infection. The following immune phase is the concurrent clea-
rance of leptospires from the blood and the appearance of  
Leptospira-specific antibodies which can be detected by sero-
logical assays. In the second phase, leptospires spread to target 
organs including kidneys from where the spirochete is excre-
ted in urine [19]. Therefore, optimal specimens for genome-
based assays are blood and urine in the primary and the  
secondary phases, respectively [1].

Previous studies suggested that whole blood and serum are 
more suitable for molecular detection than buffy coat [20–22].  
Leptospires can be engulfed by leukocytes and enriched in a 
buffy coat [23]. However, the buffy coat is not generally used 
in routine diagnostic laboratories because of an additional step 
for isolation and higher risk of contamination with chemical 
and biological inhibitors than serum [20, 22, 24, 25]. Serum is 
less contaminated with inhibitors, e.g., heme, anticoagulants, 
and host cell DNA than whole blood [20, 26–28]. Neverthel-
ess, whole blood samples containing both free-living and 
phagocytosed leptospires might be better than serum because 
bacteria are in total components of blood in contrast to serum 
from which bacteria could be trapped in blood clot after 

separation [21, 29, 30]. High-performance DNA extraction 
methods with additional step of inhibitor removal for whole 
blood may improve diagnostic sensitivity and accuracy.

Leptospira has been reported to shed and appear in urine 
since the acute phase of infection [31]. The pathogen can per-
sistently colonize in proximal renal tubules over the period of 
infection, thus it can be found in urine for a longer period than 
in blood [2]. Previous report demonstrated that the detection 
of leptospiral DNA in urine and blood specimens by mole-
cular methods had comparable and high sensitivity rate [22]. 
The urine sample preparation with an additional step of low-
speed centrifugation and then washing with sterile phosphate-
buffered saline before genome extraction increased yields of 
positive results [30]. However, urine may possibly be conta-
minated with other bacteria leading to false-positive detection 
of the 16S rRNA (rrs) target [22].

In cases of leptospirosis with acute meningitis or ence-
phalitis syndrome, leptospiral DNA might be detected in the 
cerebrospinal fluid (CSF) [25]. Some patients had higher bac-
terial loads in CSF than in blood [25, 32].

Diagnostic strategies of 
leptospirosis

Patients with signs and symptoms compatible with leptospiro-
sis should be confirmed by laboratory tests using microbiolo-
gical and serological techniques [7, 15]. The specimen collec-
tion and assay selection are based on symptomatic period and 
laboratory performance.

Detection of Leptospira in clinical specimens  

and culture

A simple and rapid method to determine leptospiral infection 
is a direct examination of the pathogen in clinical specimens 
such as blood and urine under dark-field microscopy. Lep-
tospira are visualized as thin, spiral-shaped, motile bacteria 
with hooked ends. However, this method has low sensitivity 
and specificity [33, 34] and it requires rarely available dark-
field microscope. Culture of Leptospira from clinical samples 
requires special enriched media, such as Ellinghausen–
McCullough–Johnson–Harris (EMJH) and Fletcher’s media, 
and it needs up to 4 weeks for positive detection because the 
pathogen is fastidious and grows slowly [35]. Long-term incu-
bation increases risk of contamination with other microorga-
nisms. Although culture using modified medium formulations 
showed better efficiency to eliminate contaminants, it was still 
time-consuming and unsuitable for acute leptospirosis cases 
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[36, 37]. Additional methods, such as serological tests with 
specific antibodies or polymerase chain reaction (PCR) with 
sequencing, are required to confirm the presence of pathoge-
nic Leptospira.

Serological determination for human leptospirosis

Microscopic agglutination test (MAT) has been widely 
accepted as a standard method for confirmation of leptospi-
rosis [38]. This method detects specific agglutinating antibo-
dies in patient sera against reference serovars of Leptospira 
[2]. The positive case is characterized by either a fourfold 
or greater rising in MAT titers between acute and convale-
scent sera or a higher MAT titer than a cutoff level of single 
serum depending on the baseline titers among healthy indi-
viduals in the area [7]. This method has limitations due to 
low antibody level during acute phase; therefore, a conva-
lescent serum is usually required to confirm the diagnosis 
which may not be practically obtained. In addition, it is labo-
rious and the maintenance of viable pathogenic leptospires 
is required.

The enzyme-linked immunosorbent assay (ELISA) to 
measure specific IgM may have higher sensitivity than MAT 
for diagnosis of acute leptospirosis [39–47]. Whole-cell Lepto-
spira and various recombinant outer membrane proteins have 
been used as target antigens. The major lipoprotein LipL32 
of pathogenic Leptospira exhibited outstanding outcomes  
[40, 41, 44–47]. The multi-subunit ELISA using LipL32 and 
other surface proteins could be alternative to MAT [44, 45]. 
Moreover, the multi-epitope fusion proteins containing LipL32 
and other proteins were developed to improve the efficacy  
[46, 47]. These chimeric antigens showed a better specificity 
than individual antigens. However, ELISA is time-consuming 
and it needs expensive equipment and expertise which may 
not be appropriate for resource-poor settings.

The rapid immunoassays have been used as diagnostic 
tests for leptospirosis. Agglutination and immunochromato-
graphy to detect antibodies, mostly IgM, against leptospires are 
the key principles of most available kits. They are fast, simple, 
and user-friendly, thus they can be used for point-of-care  
testing. However, various studies revealed inconsistent sen-
sitivity and specificity [48–53]. The antibody baseline varies 
in different endemic areas, thus local validation is required. 
Recent study evaluated commercially available rapid diag-
nostic tests to detect IgM against Leptospira at the time of 
admission showing approximately 90% of both sensitivity 
and specificity [50, 51, 54]. Primary screening using Dual 
Path Platform (DPP) or Test-it and further confirmation with 
SD-IgM might enhance their accuracy. The evaluation of DPP 

with finger-stick blood presented similar results to venous 
whole blood and serum samples [51]. Therefore, the rapid 
diagnostic tests are more practical and less invasive for point-
of-care testing. However, low levels of anti-Leptospira antibo-
dies at the early phase of infection limited rapid IgM detection 
to be used for screening tests.

Detection of leptospiral antigens should be a better rapid 
detection platform in the acute phase of leptospirosis. Our 
group is developing a lateral flow assay targeting LipL32 
antigen. The sensitivity and specificity are acceptable in a pilot 
study. The product has been patented and will be validated for 
the field use.

Molecular diagnosis for human leptospirosis

Currently, the affordable price of equipment and reagents 
promotes the use of molecular techniques for diagnosis of 
infectious diseases. Laboratory capacity has been gradually 
expanded in developing countries. DNA detection technology 
methods especially PCR-based methods have been applied 
for rapid detection of many emerging and re-emerging infec-
tious diseases and have the potential to become a point-of-care 
testing in endemic areas.

In the early leptospiremic phase, serological assays for 
antibody detection are limited [1, 2, 16]. Although eradica-
tion of leptospires by either immune response or antibiotic 
treatment results in failure of bacterial culture, genetic mate-
rials of leptospires may still be maintained at different sites 
in patients depending on the course of infection [20, 55, 56]. 
The molecular assays can detect both live and dead leptos-
pires in various clinical specimens from both phases of lep-
tospirosis leading to increased sensitivity of detection. The 
common targets for leptospiral detection are located on their 
housekeeping genes [57–59] and pathogen-specific regions 
[29, 30, 59–62]. The amplification and detection systems 
included conventional PCR, real-time PCR, and real-time 
reverse transcriptase PCR (real-time RT-PCR) [57, 63–66]. 
Molecular diagnosis of human leptospirosis is summarized in 
Table 1.

Conventional PCR

Conventional PCR was initially developed for the detection 
of leptospires in various clinical samples such as blood, CSF, 
and urine [64, 65, 67–69]. A previous study reported excel-
lent specificity (100%) and fair sensitivity (62%) of PCR in 
serum samples from acute phase of leptospirosis [70]. In this 
study, PCR was positive in three of the four (75%) patients 
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Table 1. Molecular diagnosis of human leptospirosis

Detection 
method

Molecular target Limit of detectiona Clinical Evaluation References

Sample % Sensitivity % Specificity

SYBR green secY 60 GE/PCR Whole blood 67.7 90.0 [63, 71–73]

lfb1 103 cells/mL ND ND ND

lipL32 102 cells/mL, 3 GE/PCR Serum 30 100

TaqMan lipL32 40 cells/mL,
1 GE/PCR

Whole blood
Serum
Blood culture
Urine

43.0–60.6
29.1
86
ND

93.0–99.0
99.0

100.0
100.0

[21, 60, 74, 75]

rrs 40 cells/mL,
1 GE/PCR

Whole blood
Serum
Buffy coat
Blood culture
Urine

18.4–96.4
50.0–51.0

35.7
69.5–100.0

39.1

90.0–99.5
99.2
99.7

95.2–97.0
91.5–92.5

[20, 74–77]

rrs/lipL32 ND Serum
Buffy coat
Urine

53.9
58.8
45.0

99.6
99.9
99.6

[22]

RT-PCR rrs 1 cell/mL Whole blood 64.0 100.0 [66]

ddPCR lipL32 10 cells/mL,
1 GE/PCR

Spiked whole blood ND ND Our study

RPA lipL32 ≤2 GE/Rx Serum 94.7 97.7 [78]

LAMP lipL32 10 GE/Rx Serum, urine 91.67 100 [79]

rrs 10 GE/Rx Serum 43.6 83.5

SYBR green, SYBR green real-time PCR; TaqMan RT-PCR, TaqMan real-time PCR; RT-PCR, reverse transcription PCR; ddPCR, droplet digital PCR; 
RPA, recombinase polymerase amplification; LAMP, loop-mediated isothermal amplification; ND, not determined.
acells/mL, Leptospira cells per milliliter; GE/PCR, genome equivalent per PCR reaction; GE/Rx, genome equivalent per reaction.

presenting no detectable antibodies in MAT, IgM ELISA, or 
slide agglutination test [70]. Moreover, the combination of the 
serological methods and PCR could enhance the sensitivity 
(93.1%-96.5%) in the first phase of leptospirosis [70].

Real-time PCR

The following generation of PCR technique, real-time PCR, 
has been applied to gain detection capability [57, 63]. Real-
time PCR has faster turnaround time and more robust sen-
sitivity and fidelity than conventional PCR [58, 61]. The 
single-tube assay with simultaneous detection prevents false-
positive detection caused by amplicon contamination. Unlike 
conventional PCR, real-time PCR is a one-step assay with no 
requirement of downstream process such as gel electrophore-
sis and ethidium bromide staining, thus it reduces the risk of 
exposure to chemical hazards. In addition, this platform could 
be further applied to quantitate leptospiral burden in patient 
bodies, which may be useful to monitor response to antibiotic 
treatment, vaccine efficacy, and correlation of bacterial burden 
with disease severity [20, 80].

SYBR green real-time PCR
The SYBR green real-time PCRs targeting different genes, 
such as lipL32, lfb1, gyrB, and secY, have been used for rapid 
diagnosis of leptospirosis [58–60, 63, 72] and demonstrated 
comparable limit of detection of approximately 103 leptospi-
ral cells/mL in the samples (1 cell or 5 genome equivalents 
per PCR reaction). The excellent performance was achieved 
by the detection of lipL32 which exhibited similar sensitivity 
and specificity to TaqMan real-time PCR targeting the same 
region [72]. The lipL32-specific SYBR green detection could 
detect 3 and 10 leptospiral genomes in spiked serum and urine, 
respectively [57]. The information suggests that TaqMan real-
time PCR may not be required if the appropriately optimized 
condition for SYBR green dye is used.

Although SYBR green real-time PCR needs extra time 
for melting curve analysis, the cost of reagents is currently 
affordable and may compensate for the drawback. The 
melting peak is unique for each amplicon; therefore, it can be 
used to discriminate genome identity. Simultaneous pathogen 
detection and species classification is the advantage of SYBR 
green exceeding molecular probe real-time PCR. The com-
bination of SYBR green-based detection and high-resolution 
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melting (HRM) analysis becomes a novel and rapid diag-
nostic assay for leptospiral genotyping based on melting pro-
files [81–83]. This technique consists of amplification and 
detection of target genes, e.g., rrs, lfb1, and secY, followed 
by amplicon melting temperature determination. The recent 
report revealed the excellent diagnosis accuracy (100%) of 
SYBR green real-time HRM to identify leptospiral DNA 
from clinical specimens comparing with nested PCR [81]. 
This assay could differentiate six genospecies including four 
known Leptospira spp. (L. interrogans, L. borgpetersenii, 
L. kirschneri, and L. noguchii) and two unclassified clinical 
isolates.

TaqMan real-time PCR
TaqMan probe real-time PCRs targeting unique genes of 
pathogenic serovars, such as lipL32 gene, or genus-specific 
genes, such as 16S rRNA gene, have been widely employed 
in several laboratories [20, 21, 62, 76, 80]. The detection of 
pathogenic Leptospira DNA using the lipL32-specific probe 
and primers showed satisfactory performance [21, 30, 74, 
75]. A previous study revealed that lipL32-specific TaqMan 
PCR had 86% sensitivity and 99% specificity to detect lepto-
spiral DNA in whole blood during the first week of infection 
[21]. The high-performance (90.3% positive detection value, 
95% confidence interval [CI]) was observed in specimens 
collected during 3–4 days of illness [21]. The limit of detec-
tion was estimated to be three genome copies per reaction or  
103 cells/mL in spiked whole blood, which is almost equi-
valent to the lowest theoretical possibility. The efficiency of 
lipL32 detection was improved by optimization of probe and 
primer sequences and their final concentrations [29, 72, 75]. 
Therefore, local validation in each laboratory should be per-
formed to determine the optimal condition.

The prevalence of leptospirosis cases caused by inter-
mediate Leptospira spp. has been gradually reported [84]. 
The lipL32-based molecular diagnosis might give false-
negative results; therefore, the detection of 16S rRNA gene, 
which is generally found in all species, should be used in 
these cases. TaqMan real-time PCR using rrs-specific probe 
and primers with comparable efficacy to lipL32 detection 
were reported [20, 22, 57, 74, 76, 77]. The rrs detection was 
promising to elicit consistent results with MAT [74]. The 
direct comparison studies showed that rrs detection pro-
vided higher sensitivity but lower specificity than lipL32 
detection of pathogenic Leptospira in clinical specimens  
[74, 75]. The rrs platform detected a few intermediate and 
nonpathogenic species resulting in its less specificity. The 
duplicate copies of rrs gene on single leptospiral chromo-
some may be the reason for better sensitivity compared 
with single copy per genome of lipL32 gene. The design of 

a new rrs-specific probe without the recognition site at the  
conserved region in nonpathogenic serovars improved the 
test sensitivity and specificity [62].

Additionally, the combination of lipL32 and rrs detection 
(rrs/lipL32 real-time PCR) [22] showed comparable sensiti-
vity and specificity to single 16S rRNA detection in blood and 
buffy coat samples, but it had significantly greater specificity 
than 16S rRNA detection in urine [22, 77]. Pre-incubation of 
blood specimens in routine hemoculture media containing 
tryptic hydrolysate of casein and soy peptone with sodium 
polyanethol sulfonate before DNA isolation improved sensi-
tivity in a pilot study but showed poor sensitivity in a sub-
sequent prospective study suggesting that directly obtained 
venous blood samples are more preferable for qPCR [77].

Reverse transcription PCR
The transcript of constitutively expressed 16S rRNA gene is 
more abundant than its corresponding genomic DNA in viable 
bacteria; therefore, detection of the gene transcript should be 
more sensitive. The 16S rRNA gene transcripts of Leptospira 
were measured by RT-PCR or cDNA-based detection [66]. 
The SYBR green real-time RT-PCR using rrs-specific primers 
for clinical blood samples provided 64% sensitivity and 100% 
specificity [66], which was better than a parallel DNA detec-
tion assay. Using the same primers for spiked whole blood, 
detection of RNA targets yielded 100-fold higher sensitivity 
than the DNA-based qPCR. Another study indicated that 
RNA-based detection by TaqMan real-time RT-PCR showed 
similar results to the SYBR green platform [55]. The real-time 
RT-PCR produced 5.6 cycle threshold of positive detection 
earlier than real-time PCR when the same DNA samples were 
analyzed in parallel indicating enhanced detection by RT-PCR 
[55, 66].

Droplet digital PCR
Droplet digital PCR (ddPCR) is a novel nucleic acid quanti-
fication method that can be subsequently applied to TaqMan 
probe, SYBR green, or reverse transcription ddPCR [85–88]. 
The reaction mixture is generated into water–oil emulsion 
nanosize particles that separate a single DNA template mole-
cule into individual droplets. The positive detection refers to 
the fluorescent signal in each droplet representing single target 
copy per droplet. The direct quantification is estimated by the 
total count of positive droplets; therefore, the DNA standard 
curve is not required. Several publications reported the advan-
tages of ddPCR in terms of sensitivity, accuracy, and repro-
ducibility than real-time PCR to detect the causative agents 
of infectious diseases in clinical samples with very low level 
of targeted genomes [86, 88–93]. However, current ddPCR 
systems compared with qPCR are very expensive, have low 



212    Techawiwattanaboon and Patarakul

throughput, and have longer turnaround time to be used for 
routine diagnosis.

In theory, ddPCR might be useful for diagnosis of leptos-
pirosis in the early phase because of low-abundance Leptospira 
in the blood. Recently, we performed preliminary experiments 
to detect and enumerate the number of leptospires in whole 
blood specimens. We used ddPCR with lipL32-specific probe 
and primers to detect leptospiral DNA in Leptospira-spiked 
blood. This method was able to detect one leptospiral cell in 
5  µL of DNA template per reaction which was not detected 
by TaqMan real-time PCR using the same probe and primer 
set (unpublished data). The limit of detection was 10 cells/
mL. Therefore, our results supported the greater efficiency of 
ddPCR. Moreover, we also used this technique to quantitate 
leptospiral burden in blood and kidneys of vaccinated hams-
ters. The absolute quantification of leptospiral DNA by ddPCR 
helped us to obtain more reliable results to determine the 
vaccine efficacy (unpublished data). However, there is insuf-
ficient data to support utilizing ddPCR in diagnosis of leptospi-
rosis. More studies using enough clinical samples are required 
to determine its performance compared with other techniques.

Isothermal amplification 

The leptospirosis cases commonly present at hospitals in 
the rural areas. The rapid detection with less expensive and 
simpler methods such as loop-mediated isothermal amplifica-
tion (LAMP) and isothermal recombinase polymerase ampli-
fication (RPA) assay have been determined for diagnosis of 
leptospirosis [78, 79, 94-97]. Similar targets to PCR methods, 
lipL32 and rrs, are also used for LAMP and RPA. The RPA 
procedure contains the process of DNA synthesis, DNA 
recombination, and DNA repair. The commercial RPA presen-
ted sensitivity of 94% and specificity of 97.7% comparing with 
culture method and the limit of detection of approximately two 
genome copies per reaction [78]. The LAMP using 16S rRNA 
specific primers detected as lower as two leptospiral cells per 
reaction in urine [96]. In a clinical evaluation of the 16S rRNA 
LAMP, the sensitivity of 43.6% and specificity of 83.5% were 
estimated in blood specimens [97]. The sensitivity of 91.67% 
and specificity of 100% for Leptospira detection in serum and 
urine were obtained from lipL32-specific LAMP [79]. The 
nanoparticle-based lateral flow dipstick assay combined with 
multiplex LAMP had three targets: the LAMP target ampli-
con, the LAMP internal control amplicon, and a chromatogra-
phy control, and it showed acceptable performance [95] with 
100% specificity and a limit of detection of 0.395 genomic 
equivalent/mL; therefore, it may serve as a point-of-care test 
for diagnosis of leptospirosis.

Conclusions

Early diagnosis of leptospirosis especially in severe cases is 
crucial for prompt and appropriate treatment to minimize mor-
bidity and mortality. Nucleic acid detection tests are recom-
mended for detection of Leptospira in the blood samples 
during acute leptospiremic phase. So far, there are insufficient 
data of direct comparison demonstrating which nucleic acid 
detection test is the most accurate. In practice, we suggest that 
PCR-based detection either conventional or real-time PCR, 
depending on availability in the setting, is a method of choice 
to detect leptospiral DNA in the blood samples collected in the 
acute phase of leptospirosis. Their accuracy may depend on 
several factors including timing of sample collection, preva-
lence in the region, blood sample type (whole blood, plasma, 
or serum), primers or target genes, and detection method of the 
amplified products. However, the interpretation of the results 
must consider the strength of suspicion of leptospirosis cases 
and the prevalence of leptospirosis in the setting. In case of 
strong suspicion, diagnosis of leptospirosis cannot be exclu-
ded despite of negative PCR results. In the immune phase of 
disease, nucleic acid detection in urine samples may be per-
formed in addition to serological tests, such as MAT or IgM 
ELISA to increase the sensitivity of diagnosis. Nevertheless, 
these tests will be less helpful in the early phase of infection. 
In the future, high-throughput nucleic acid detection or syn-
dromic panel-based testing using multiplex real-time PCR or 
microarray, and next-generation sequencing that can be used 
for simultaneous diagnosis of multiple tropical diseases inclu-
ding leptospirosis, may be commercially available and more 
widely used if its cost-effectiveness has been determined and 
justified.
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