Cite

PbZr0.52Ti0.48O3 nanocrystals were synthesized by a hydrothermal method. The effect of NaOH concentration, reaction temperature and time on nucleation and growth of PbZr0.52Ti0.48O3 nanocrystals was investigated. As the 0.05 mol/L PbZr0.52Ti0.48O3 precursors were heated at 200 °C for 21 h with NaOH concentration of 0.5 mol/L, the tetragonal PbZr0.52Ti0.48O3 nanocrystals were formed, and the grain size was more than 20 nm. With increasing the NaOH concentration from 0.5 to 1.5 mol/L, the grain size of PbZr0.52Ti0.48O3 nanocrystals decreased. When the precursors were heated at different temperatures (140 °C to 200 °C) for 21 h with 1.0 mol/L NaOH, single-phase PbZr0.52Ti0.48O3 nanocrystals were obtained at 160 °C to 200 °C. With increasing the reaction temperature from 160 °C to 200 °C, the grains size of PbZr0.52Ti0.48O3 nanocrystals increased from 5 nm to 9 nm. When the precursors were heated at 160 °C in different reaction times from 6 h to 21 h, the evolution from amorphous to crystalline PbZr0.52Ti0.48O3 nanocrystals in correlation with the reaction time was observed. Single crystalline PbZr0.52Ti0.48O3 nanocrystals with narrow size distribution (from 5 nm to 9 nm) were synthesized by controlling the NaOH concentration, reaction temperature and time. The obtained results can find potential application in preparing PbZr0.52Ti0.48O3 thin films on flexible substrates.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties