Open Access

Weighted Variable Exponent Sobolev spaces on metric measure spaces


Cite

In this article we define the weighted variable exponent-Sobolev spaces on arbitrary metric spaces, with finite diameter and equipped with finite, positive Borel regular outer measure. We employ a Hajlasz definition, which uses a point wise maximal inequality. We prove that these spaces are Banach, that the Poincaré inequality holds and that lipschitz functions are dense. We develop a capacity theory based on these spaces. We study basic properties of capacity and several convergence results. As an application, we prove that each weighted variable exponent-Sobolev function has a quasi-continuous representative, we study different definitions of the first order weighted variable exponent-Sobolev spaces with zero boundary values, we define the Dirichlet energy and we prove that it has a minimizer in the weighted variable exponent -Sobolev spaces case.