Open Access

An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests


Cite

1. Maynard AD. Challenges in nanoparticle risk assessment. In: Ramachandran G, editor. Assessing nanoparticle risks to human health. 1st ed. Oxford: Elsevier Inc.; 2011. p. 1-19.10.1016/B978-1-4377-7863-2.00001-7Search in Google Scholar

2. Kononenko V, Narat M, Drobne D. Nanoparticle interaction with the immue system. Arh Hig Rada Toksikol 2015;66:97-108. doi: 10.1515/aiht-2015-66-2582Search in Google Scholar

3. Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014;31:173-86. doi: 10.1080/19440049.2013.865147Search in Google Scholar

4. Espitia PJP, de Fátima Ferreira Soares N, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Technol 2012;5:1447-64. doi: 10.1007/s11947-012-0797-6Search in Google Scholar

5. Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, Ruedl C, Ng KW, Loo JS. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol 2011;85:1517-28. doi: 10.1007/ s00204-011-0722-1Search in Google Scholar

6. Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 2012;17:852-70. doi: 10.1007/s10495-012-0705-6Search in Google Scholar

7. Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol 2011;27:333-42. doi: 10.1007/s10565-011-9191-9Search in Google Scholar

8. Pujalté I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, L’Azou B. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 2011;8:10. doi: 10.1186/1743-8977-8-10Search in Google Scholar

9. Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, Landsiedel R. Inhalation toxicity of nano-scale zinc oxide in comparison with pigmentary zinc oxide using short-term inhalation test protocol. Naunyn-Schmiedeberg’s Arch Pharmacol 2008;377(Suppl 1):72.Search in Google Scholar

10. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 2008;10:263-76. doi: 10.1007/s11051-007-9245-3Search in Google Scholar

11. Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 2013;136-137:49-59. doi: 10.1016/j. aquatox.2013.03.019Search in Google Scholar

12. Karlsson HL. The comet assay in nanotoxicology research. Anal Bioanal Chem 2010;398:651-66. doi: 10.1007/s00216-010-3977-0Search in Google Scholar

13. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014;8:233-78. doi: 10.3109/17435390.2013.773464Search in Google Scholar

14. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007;90:2139021-3. doi: 10.1063/1.2742324Search in Google Scholar

15. Di Virgilio AL, Reigosa M, Arnal PM, Fernandez Lorenzo de Mele M. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 2010;177:711-8. doi: 10.1016/j.jhazmat.2009.12.089Search in Google Scholar

16. Yee KS, Vousden KH. Complicating the complexity of p53. Carcinogenesis 2005;26:1317-22. doi: 10.1093/carcin/bgi122Search in Google Scholar

17. Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm- Alvarez SF, Borok Z, Kim KJ, Crandall ED. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 2010;182:1398-409. doi: 10.1164/rccm.201002-0185OCSearch in Google Scholar

18. Compton RG, Banks CE. Understanding Voltammetry. 2nd ed. London: Imperial College Press; 2011.10.1142/p726Search in Google Scholar

19. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 2008;5:14. doi: 10.1186/1743-8977-5-14Search in Google Scholar

20. Mladinić M, Želježić D, Shaposhnikov SA, Collins AR. The use of FISH-comet to detect c-Myc and TP 53 damage in extended-term lymphocyte cultures treated with terbuthylazine and carbofuran. Toxicol Lett 2012;211:62-9. doi: 10.1016/j.toxlet.2012.03.001Search in Google Scholar

21. Duke RC, Cohen JJ. Morphological and biochemical assays of apoptosis. In: Janssen K, editor. Current protocols in immunology. New York (NY): John Willey and Sons; 1992. p. 3.17.1-16.Search in Google Scholar

22. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184-91. doi: 10.1016/0014-4827(88)90265-0Search in Google Scholar

23. Mladinić M, Želježić D. Modification of comet-FISH technique by using temperature instead of chemical denaturation. MethodsX 2014;1:162-7. doi: 10.1016/j. mex.2014.08.010Search in Google Scholar

24. Vukosav P, Mlakar M, Cukrov N, Kwokal Ž, Pižeta I, Pavlus N, Špoljarić I, Vurnek, M, Brozinčević A, Omanović D. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia). Environ Sci Pollut Res Int 2014;21:3826-39. doi: 10.1007/s11356-013-2377-3Search in Google Scholar

25. Cobelo-Garcia A, Santos-Echeandia J, Lopez-Sanchez DE, Almecija C, Omanović, D. Improving the voltammetric quantification of ill-defined peaks using second derivative signal transformation: example of the determination of platinum in water and sediments. Anal Chem 2014;86:2308-13. doi: 10.1021/ac403558ySearch in Google Scholar

26. Lenoble V, Omanović D, Garnier C, Mounier S, Donlagić N, Le Poupon C, Pižeta I. Distribution and chemical speciation of arsenic and heavy metals in highly contaminated waters used for health care purposes (Srebrenica, Bosnia and Herzegovina). Sci Total Environ 2013;443:420-8. doi: 10.1016/j.scitotenv.2012.10.002Search in Google Scholar

27. Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology 2014;8:57-71. doi: 10.3109/17435390.2013.855831Search in Google Scholar

28. Jignesh S, Vineeta K, Abhay S, Vilasrao K. Analytical methods for estimation of metals. Int J Res Pharm Chem 2012;2:146-63.Search in Google Scholar

29. Guo D, Bi H, Wu Q, Wang D, Cui Y. Zinc oxide nanoparticles induce rat retinal ganglion cell damage through bcl-2, caspase-9 and caspase-12 pathways. J Nanosci Nanotechnol 2013;13:3769-777. doi: 10.1166/jnn.2013.7169Search in Google Scholar

30. Mu Q, David CA, Galceran J, Rey-Castro C, Krzemiński Ł, Wallace R, Bamiduro F, Milne SJ, Hondow NS, Brydson R, Vizcay-Barrena G, Routledge MN, Jeuken LJ, Brown AP. Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles. Chem Res Toxicol 2014;27:558-67. doi: 10.1021/tx4004243Search in Google Scholar

31. Demir E, Akça H, Kaya B, Burgucu D, Tokgün O, Turna F, Aksakal S, Vales G, Creus A, Marcos R. Zinc oxide nanoparticles: Genotoxicity, interactions with UV-light and cell-transforming potential. J Hazard Mater 2014;264:420-9. doi: 10.1016/j.jhazmat.2013.11.043Search in Google Scholar

32. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 2009;185:211-8. doi: 10.1016/j.toxlet.2009.01.008Search in Google Scholar

33. Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D. Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine 2010:5:1193-203. doi: 10.2217/nnm.10.52Search in Google Scholar

34. Horinouchi M, Arimoto-Kobayashi S. Photomicronucleus assay of phototoxic and pseudophotoclastogenic chemicals in human keratinocyte NCTC2544 cells. Mutat Res 2011;723:43-50. doi: 10.1016/j.mrgentox.2011.04.005Search in Google Scholar

35. Sharma V, Singh SK, Anderson D, Tobin DJ, Dhawan A. Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J Nanosci Nanotechnol 2011;11:3782-8. doi: 10.1166/jnn.2011.4250Search in Google Scholar

36. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 2011;25:657-63. doi: 10.1016/j.tiv.2011.01. 003Search in Google Scholar

37. Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 2011;7:98-9. doi: 10.1166/jbn.2011.1220Search in Google Scholar

38. Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanosc Res Lett 2012;7:602. doi: 10.1186/1556-276X-7-602Search in Google Scholar

39. Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui MK, AlSalhi MS, Alrokayan SA. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine 2011;7:904-13. doi: 10.1016/j.nano.2011.04. 011Search in Google Scholar

40. Ng KW, Khoo SP, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JS. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 2011;32:8218-25. doi: 10.1016/j.biomaterials.2011.07.036Search in Google Scholar

41. Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 2012;6:4921-30. doi: 10.1021/nn300425aSearch in Google Scholar

42. Roy R, Parashar V, Chauhan L, Shanker R, Das M, Tripathi A, Dwivedi PD. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol In Vitro 2014;28:457-67. doi: 10.1016/j.tiv.2013.12.004Search in Google Scholar

43. Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chemical research in toxicology 2010;23:733-9. doi: 10.1021/tx900203vSearch in Google Scholar

44. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano 2008;2:2121-34. doi: 10.1021/nn800511kSearch in Google Scholar

45. Yoo HJ, Yoon TH. Flow cytometric assessment of reactive oxygen species generations that are directly telated to cellular ZnO nanoparticle uptake. J Nanosci Nanotechnol 2014;14:5395-401. doi: 10.1166/jnn.2014.8733Search in Google Scholar

46. Yu J, Baek M, Chung H, Choi S. Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake. J Phys Conf Ser 2011;304:012007. doi: 10.1088/1742-6596/304/1/012007Search in Google Scholar

47. Galić E, Tadin A, Galić N, Kašuba V, Mladinić M, Rozgaj R, Biočina-Lukenda D, Galić I, Želježić D. Micronucleus, alkaline, and human 8-oxoguanine glycosylase 1 modified comet assays evaluation of glass-ionomer cements - in vitro. Arh Hig Rada Toksikol 2014;65:179-88. doi: 10.2478/10004-1254-65-2014-2392 Search in Google Scholar

48. Rojas E, Lopez MC, Valverde M. Single cell electrophoresis assay: methodology and applications. J Chrom B Biomed Sci Appl 1999;722:225-54. doi: 10.1016/S0378-4347(98)00313-2Search in Google Scholar

49. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. The comet assay: topical issues. Mutagenesis 2008;23:143-51. doi: 10.1093/ mutage/gem051Search in Google Scholar

50. Doak S, Griffiths S, Manshian B, Singh N, Williams P, Brown A, Jenkins G. Confounding experimental considerations in nanogenotoxicology. Mutagenesis 2009;24:285-93. doi: 10.1093/mutage/gep010 Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other