Open Access

Energy storage: dielectrophores – molecules with non-linear polarizability


Cite

We examine the feasibility of film capacitors based on dielectrics with high non-linear polarizability as energy storage devices. Capacitors with increased energy density can be built by using composite materials with aromatic molecules (high polarizability) and envelope of alkyl tails (high resistivity). We determine the impact of the second order non-linearity onto energy density and translate high energy density requirements into molecular parameters necessary for high-performance capacitors. The relationship of permittivity and molecular polarizability is obtained by means of the non-linear Clausius–Mossotti equation. In order to demonstrate the the selection process for the molecular composition of dielectrophores, we compare several molecules, using quantum chemistry algorithms (Gaussian09). Starting from Langhals perylene (LP), we proceed with the nitrophenyl-perylene having one NH2 group (donor) and one NO2 group (acceptor). We show that, while their linear polarizabilities are comparable, the hyperpolarizabilities differ by several orders of the magnitudes. Two NH2 and NO2 groups can be attached to the nitro-naphthalene-perylene further increasing of the hyperpolarizability. Even larger polarization can be achieved by additional rylene groups increasing the polarizable electronic mass. We demonstrate that with such molecular engineering, capacitors can have the energy density which is attractive for practical applications.

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials