The Laurentian Neoproterozoic Glacial Interval: reappraising the extent and timing of glaciation

Daniel Paul Le Heron 1 , Nicholas Eyles 2 ,  and Marie Elen Busfield 3
  • 1 Department for Geodynamics and Sedimentology, Althanstraße 14, University of Vienna, 1090, Vienna
  • 2 Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, ON, Canada
  • 3 Department of Geography and Earth Sciences, Llandinam Building, Aberystwyth University, SY23 3DB, United Kingdom

Abstract

One of the major issues in Neoproterozoic geology is the extent to which glaciations in the Cryogenian and Ediacaran periods were global in extent and synchronous or regional in extent and diachronous. A similarly outstanding concern is determining whether deposits are truly glacial, as opposed to gravitationally initiated mass flow deposits in the context of a rifting Rodinia supercontinent. In this paper, we present 115 publically available, quality-filtered chronostratigraphic constraints on the age and duration of Neoproterozoic glacial successions, and compare their palaeocontinental distribution. Depositional ages from North America (Laurentia) clearly support the idea of a substantial glacial epoch between about 720-660 Ma on this palaeocontinent but paradoxically, the majority of Australian glacial strata plot outside the previously proposed global time band for the eponymous Sturtian glaciation, with new dates from China also plotting in a time window previously thought to be an interglacial. For the early Cryogenian, the data permit either a short, sharp 2.4 Ma long global glaciation, or diachronous shifting of ice centres across the Rodinia palaeocontinent, implying regional rather than global ice covers and asynchronous glacial cycles. Thus, based on careful consideration of age constraints, we suggest that strata deposited in the ca. 720-660 Ma window in North America are better described as belonging to a Laurentian Neoproterozoic Glacial Interval (LNGI), given that use of the term Sturtian for a major Neoproterozoic glacial epoch can clearly no longer be justified. This finding is of fundamental importance for reconstructing the Neoproterozoic climate system because chronological constraints do not support the concept of a synchronous panglacial Snowball Earth. Diachroneity of the glacial record reflects underlying palaeotectonic and palaeogeographic controls on the timing of glaciation resulting from the progressive breakup of the Rodinian supercontinent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agassiz, L., 1840, Études sur les glaciers. Neuchâtel. Jent et Gassmann.

  • Aleinikoff, J.N., Zartman, R.E., Walter, M., Rankin, D.W., Lyttle, P.T., Burton, W.C., 1995. U-Pb ages of metarhyolites of the Catoctin and Mount Rogers Formation, central and southern Appalachians: evidence for two pulses of Iapetan Rifting. American Journal of Science, 295, 428-454. https://doi:10.2475/ajs.295.4.428

  • Ali, D.O., Spencer, A.M., Fairchild, I.J., Chew, K.J., Anderton, R., Levell, B.K., Hambrey, M.J., Dove, D., Le Heron, D.P., 2018. Indicators of relative completeness of the glacial record of the Port Askaig Formation, Garvellach Islands, Scotland. Precambrian Research, 319, 69-78. https://doi.org/10.1016/j.precamres.2017.12.005

  • Ali, K.A., Stern, R.J., Manton, W.I., Kimura, J.I., Khamees, H.A., 2009. Geochemistry, Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from Central Eastern Desert of Egypt: New insights into the ~750 Ma crust-forming events. Precambrian Research, 171, 1-22. https://doi.org/10.1016/j.precamres.2009.03.002

  • Ali, K.A., Stern, R.J., Manton, W.I., Johnson, P.R., Mukherjee, S.K., 2010. Neoproterozoic diamictite in the Eastern Desert of Egypt and Northern Saudi Arabia: Evidence of ~750 Ma glaciation in the Arabian-Nubian Shield? International Journal of Earth Sciences, 99, 705-726. https://doi.org/10.1007/s00531-009-0427-3

  • Allen, P.A., Etienne, J.L., 2008. Sedimentary challenge to Snowball Earth: Nature Geoscience, 1, 817–825. https://doi.org/10.1038/ngeo355

  • Arnaud, E., 2004. Giant cross-beds in the Neoproterozoic Port Askaig Formation, Scotland: Implications for snowball Earth. Sedimentary Geology, 165, 155-174. https://doi.org/10.1016/j.sedgeo.2003.11.015

  • Babinski, M., Vieira, L.C., Trindade, R.I.F., 2007. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova, 19, 401-406. https://doi.org/10.1111/j.1365-3121.2007.00764.x

  • Barfod, G.H., Albarede, F., Knoll, A.H., Xiao, S., Télouk, P., Frei, P., J., 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 201, 203-212. https://doi.org/10.1016/S0012-821X(02)00687-8

  • Borg, G., Kärner, K., Buxton, M., Armstrong, R., Merwe, S.W.V.D., 2003. Geology of Skorpion supergene zinc deposit Southern Namibia. Economic Geology, 98, 749-771. https://doi.org/10.2113/gsecongeo.98.4.749

  • Bowring, S.A., Grotzinger, J.P., Condon, D.J., Ramezani, J., Newall, M.J., Allen, P.A., 2007. Geochronological constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307, 1097-1145. https://doi.org/10.2475/10.2007.01

  • Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P.A., Shields, G., 2000. New U-PB zircon ages for the Neoproterozic Ghubrah glaciations and for the top of the Huqf Supergroup, Oman. Geology, 28, 175-178. https://doi.org/10.1130/0091-7613(2000)28<175:NUZDFT>2.0.CO;2

  • Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., Hallmann, C., Hoshino, Y., Liyange, T., 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548, 578-581. https://doi.org/10.1038/nature23457

  • Busfield, M.E., Le Heron, D.P., 2014. Sequencing the Sturtian icehouse: dynamic ice behavior in South Australia. Journal of the Geological Society of London 171, 443–456. https://doi.org/10.1144/jgs2013-067

  • Busfield, M.E., Le Heron, D.P., 2016. A Neoproterozoic ice advance sequence, Sperry Wash, California. Sedimentology, 63, 307-330. https://doi.org/10.1111/sed.12210

  • Busfield, M.E., Le Heron, D.P., 2018. Snowball Earth under the microscope. Journal of Sedimentary Research, 88, 659-677. https://doi.org/10.2110/jsr.2018.34

  • Calver, C.R., Black, L.P., Everard, J.L., Seymour, D.B., 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32, 893-896. https://doi.org/10.1130/G20713.1

  • Calver, C.R., Crowley, J.L., Wingate, M.T.D., Evans, D.A.D., Raub, T.D., Schmitz, M.D., 2013. Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia. Geology, 41, 1127-1130. https://doi.org/10.1130/G34568.1

  • Chen, D.F., Dong, W.Q., Zhu, B.Q., Chen, X.P., 2004. Pb-Pb ages of the Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glacial events. Precambrian Research, 132, 123-132. https://doi.org/10.1016/j.precamres.2004.02.005

  • Coleman, A.P., 1926. Ice Ages: Recent and Ancient. Macmillan, London, 296 pp. https://doi.org/10.1038/118293a0

  • Colpron, M., Logan, J.M., Mortensen, J.K., 2002. U-Pb zircon age constraints for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Canadian Journal of Earth Sciences, 39, 133-143. https://doi.org/10.1139/e01-069

  • Condon, D.J., Prave, A.R., Benn, D.I., 2002. Neoproterozoic glacial-rainout intervals: Observations and implications. Geology, 30, 35–38. https://doi.org/10.1130/0091-7613(2002)030<0035:NGRIOA>2.0.CO;2

  • Condon, D.J., Zhu, M., Bowring, S., Wang, W., Yang, A., Jin, Y., 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation. Chin. Sci., 308, 95-98. https://doi/10.1126/science.1107765

  • Condon, D.J., Bowring, S.A., 2011. Chapter 9: A user’s guide to Neoproterozoic geochronology. Geological Society of London, Memoirs, 36, 135-149. https://doi.org/10.1144/M36.9

  • Cox, G.M., Strauss, J.V., Halverson, G.P., Schmitz, M.D., Mc-Clelland, W.C., Stevenson, R.S., Macdonald, F.A., 2015. Kikiktat volcanics of Arctic Alaska-Melting of harzburgitic mantle associated with the Franklin Large Igneous Province. Lithosphere, 7, 275-295. https://doi/10.1130/L435.1

  • Cox, G.M., Isakson, V., Hoffman, P.F., Gernon, T.M., Schmitz, M.D., Shahin, S., Collins, A.S., Preiss, W., Blades, M.L., Mitchell, R.N., Nordsvan, A., 2018. South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Research, 315, 257-263. https://doi.org/10.1016/j.precamres.2018.07.007

  • Creveling, J. R., Bergmann, K. D., Grotzinger, J. P., 2016. Cap carbonate platform facies model, Noonday Formation, SE California. Geological Society of America Bulletin, 128, 1249-1269.

  • DeLucia, M.S., Guenthner, W.R., Marshak, S., Thomson, S.N., Ault, A.K., 2018. Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth. Geology, 46, 167–170. https://doi.org/10.1130/G39525.1

  • Dempster, T.J., Rogers, G., Tanner, P.W.G., Bluck, B.J., Muir, R.J., Redwood, S.D., Ireland, T.R., Paterson, B.A., 2002. Timing of deposition, orogenesis and glaciation within the Dalradian rocks of Scotland; constraints from U-Pb zircon ages. Journal of the Geological Society of London, 159, 83-94. https://doi.org/10.1144/0016-764901061

  • Denyszyn, S.W., Davis, D.W., Hall, H.C., 2009. Paleomagnetisum and U-Pb geochronology of the Clarence Head dykes, Artic Canada: Orthogonal emplacement of mafic dykes in a large igneous province. Canadian Journal of Earth Sciences, 46, 155-167. https://doi.org/10.1139/E09-011

  • Dubreuilh, J.M., Platel, P., Le Metour, J., Roger, J., Wyns, R., Bechennec, F., Berthiaux, A., 1992. Geological map of Khaluf, 1: 250 000, sheet NF 40-15. Bureau de Recherches géologiques et minières, Orléans, France.

  • Evans, D.A.D., 2000, Stratigraphic, Geochronological, and Paleomagnetic constraints upon the Neoproterozoic climatic paradox. American Journal of Science, 300, 347-433. https://doi/10.2475/ajs.300.5.347

  • Evenchick, C.A., Parrish, R.R., Gabrielse, H., 1984. Precambrian gneiss and Proterozoic sedimentation in north-central British Columbia. Geology, 12, 233-237. https://doi.org/10.1130/0091-7613(1984)12<233:PGALPS>2.0.CO;2

  • Eyles, N., Januszczak, N., 2004. ‘Zipper-rift’: A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews, 65, 1–73. https://doi.org/10.1016/S0012-8252(03)00080-1

  • Fanning, C.M., Link, P.K., 2004. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 10, 881-884. https://doi.org/10.1130/G20609.1

  • Ferri, F., Rees, C.J., Nelson, J.L., Legun, A.S., 1999. Geology and mineral deposits of the northern Kechika Trough between Gataga River and the 60th parallel. British Columbia Ministry of Energy and Mines, Bulletin, 107, 1-22.

  • Fetter, A.H., Goldberg, S.A., 1995. Age and geochemical characteristics of the bimodal magmatism in the Neoproterozoic Grandfather Mountain rift basin. Journal of Geology, 103, 313-326. https://doi/10.1086/629749

  • Frimmel, H.E., Klötzli, U.S., Siegfried, P.R., 1996. New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. Journal of Geology, 104, 459-469. http://doi/10.1086/629839

  • Frimmel, H.E., Zartman, R.E., Späth, A., 2001. The Rich-tersveld Igneous Complex, South Africa: U-Pb Zircon and geochemical evidence for the beginning of Neoproterozoic continental breakup. Journal of Geology, 109, 493-508. https://doi.org/10.1086/320795

  • Gorin, G.E., Racz, L.G., Walter, M.R., 1982. Late Precambian-Cambrian sediments of the Huqf Group, Sultanate of Oman. American Association of Petroleum Geologists Bulletin, 66, 2609-2627.

  • Halliday, A.N., Graham, C.M., Aftalion, M., Dymoke, P., 1989. The depositional age of the Dalradian Supergroup; U-Pb and Sm-Nd isotopic studies of the Tayvallich Volcanics, Scotland. Journal of the Geological Society of London, 146, 3-6. https://doi.org/10.1144/gsjgs.146.1.0003

  • Halverson, G.P., Wade, B.P., Hurtgen, M.T., Barovich, K.M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research, 182, 337–350. https://doi/10.1016/j.precamres.2010.04.007

  • Harland, W.B., 1964. Critical evidence for a great infra-Cambrian glaciation. Geologisches Rundschau, 54, 45–61. https://doi.org/10.1007/BF01821169

  • Heaman, L.M., Le Cheminant, A.N., Rainbird, R.H., 1992. Nature and timing of the Franklin igneous events Canada: implications for a late Proterozoic mantle plume and break up of Laurentia. Earth and Planetary Science Letters, 109, 117-131. https://doi.org/10.1016/0012-821X(92)90078-A

  • Hoffman, P.F., 2011. A history of Neoproterozoic glacial geology, 1871–1997. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir 36, 17–37. https://doi.org/10.1144/M36.2

  • Hoffman, P.F., Hawkins, D.P., Isachsen, C.E., Bowring, S.A., 1996. Precise U-Pb zircon ages for early Damaran magmatism in the Summas mountains and Welwitschia inlier, northern Damara belt Namibia. Communications of the Geological Survey of Namibia, 11, 47-52.

  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic Snowball Earth. Science, 281, 1342–1346. 10.1126/science.281.5381.1342

  • Hoffman, P.F., Schrag, D.P., 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129–155. 10.1046/j.1365-3121.2002.00408.x

  • Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y., Erwin, D.H., Fairchild, I.J., Ferreira, D., Goodman, J.C., Halverson, G.P., Jansen, M.F., Le Hir, G., Love, G.D., Macdonald, F.A., Maloof, A.C., Partin, C.A., Ramstein, G., Rose, B.E.J., Rose, C.V., Sadler, P.M., Tziperman, E., Voigt, A., Warren, S.G., 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3 (11), e1600983. https://doi/0.1126/sciadv.1600983

  • Fairchild, I.J., Kennedy, M.J., 2007. Neoproterozoic glaciation in the Earth System. Journal of the Geological Society, London, 164, 895–921. https://doi.org/10.1144/0016-76492006-191

  • Ireland, T.R., Flöttmann, T., Fanning, C.M., Gibson, G.M., Preiss, W.V., 1998. Development of the early Palaeozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogeny. Geology, 26, 243-246. https://doi.org/10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2

  • Jefferson, C.W., Parrish, R.R., 1989. Late Proterozoic stratigraphy, U-Pb zircon ages, and rift tectonics, Mackenzie Mountains, northwestern Canada. Canadian Journal of Earth Science, 26, 1784-1801. https://doi.org/10.1139/e89-151

  • Kalstrom, K.E., Bowring, S.A., Dehler, C.M., Knoll, A.H., Porter, S.M., Marais, D.J.D., Weil, A.B., Sharp, Z.D., Geissman, J.W., Elrick, M.B., Timmons, J.M., Crossey, L.J., Davidek, K.L., 2000. Chuar Group of the Grand Canyon: Record of breakup of Rodina, associated changes in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28, 619-622. https://doi/10.1130/0091-7613(2000)28<619:cgotgc>2.0.co;2

  • Kaye, C.A., Zartman, R.E., 1980. A Late Proterozoic to Cambrian age for the stratified rocks of the Boston Basin, Massachusetts, USA. In: Wones, D.R. (ed.), The Caledonides in the USA. Virginia Polytechnic Institute and State University Memoir, 2, 257-261.

  • Keeley, J.A., Link, P.K., Fanning, C.M., Schmitz, M.D., 2013. Pre- to synglacial rift-related volcanism in the Neoproterozoic (Cryogenian) Pocatello Formation, SE Idaho: New SHRIMP and CA-ID TIMS constraints. Lithosphere, 5, 128-150. https://doi.org/10.1130/L226.1

  • Kendall, B.S., Creaser, R.A., Ross, G., Selby, D., 2004. Constraints on the timing of Marinoan “snowball Earth” glaciation by 187Re-187Os dating of a Neoproterozoic post glacial black shale in western Canada. Earth and Planetary Science Letters, 222, 729-740. https://doi.org/10.1016/j.epsl.2004.04.004

  • Kendall, B., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciations. Geology, 34, 729-732. https://doi.org/10.1130/G22775.1

  • Kendall, B., Creaser, R.A., Calver, C.R., Raub, T.B., Evans, D.A.D., 2009. Correlation of Sturtian diamictite successions in southern Australia and northwestern Tasmania by Re-Os black shale geochronology and the ambiguity of “Sturtian”-type diamictite-cap carbonate pairs as chronostrati-graphic maker horizons. Precambrian Research, 172, 301-310. https://doi.org/10.1016/j.precamres.2009.05.001

  • Kennedy, K., Eyles, N., Broughton, D., 2018. Basinal setting and origin of thick (1.8 km) mass flow dominated Grand Conglomérat diamictites, Kamoa, Democratic Republic of Congo: Resolving climate and tectonic controls during Neoproterozoic glaciations. Sedimentology, 66, 556-589. https://doi.org/10.1111/sed.12494

  • Kennedy, K., Eyles, N., 2019. Subaqueous debrites of the Grand Conglomérat Formation, Democratic Republic of Congo: a model for anomalously thick Neoproterozoic ‘glacial’ diamictites. Journal of Sedimentary Research, 89, 1-21. https://doi.org/10.2110/jsr.2019.51

  • Kennedy, K., Eyles, N., 2020, Tectonically-generated debris flows and related mass-flow ‘tectonofacies’ of the Neoproterozoic Kingston Peak Formation, Death Valley California. Sedimentology in press.

  • Key, R.M., Liyungu, A.K., Njamu, F.M., Somwe, V., Banda, J., Mosley, P.N., Armstrong, R.A., 2001. The western arm of Lufilian Arc in Zambia and its potential for copper mineralization. Journal of African Earth Science, 33, 503-528. https://doi.org/10.1016/S0899-5362(01)00098-7

  • Kirschvink, J.L., 1992. Late Proterozoic low-latitude glaciation: The snowball Earth. In: Schopf, J.W., Klein, C. (eds.), The Proterozoic biosphere. Cambridge University Press, Cambridge, 51–52.

  • Krogh, T.E., Strong, D.F., O’Brien, S.J., Papezik, V.S., 1988. Precise U-Pb zircon dates from the Avalon Terrane in Newfoundland. Canadian Journal of Earth Sciences, 25, 442-453. https://doi.org/10.1139/e88-045

  • Kröner, A., 1977. Non-synchroneity of late Precambrian glaciations in Africa. Journal of Geology, 85, 289-300. https://doi.org/10.1086/628300

  • Lahondère, D., Roger, J., Le Métour, J., Donzeau, M., Guillocheau, F., Helm, C., Thiéblemont, D., Cocherie, A., Guerrot, C., 2005. Notice explicative des cartes géologiques à 1/200.00 et 1/500,000 de ľ extrème sud de la Mauritanie. DMG, Ministère des mines et de ľindustrie, Nouakchott, Rapport BRGM/RC-54273-FR, 610.

  • Lan, Z., Li, X., Zhu, M., Chen, Z.-Q., Zhang, Q., Li, Q., Lu, D., Liu, Y., Tang, G., 2014. A rapid and synchronous initiation of the widespread Cryogenian glaciations. Precambrian Research, 255, 401-411. http://doi/10.1016/j.precamres.2014.10.015

  • Leather, J., Allen, P.A., Brasier, M.D., Cozzi, A., 2002. Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman. Geology, 30, 891–894. https://doi.org/10.1130/0091-7613(2002)030<0891:NSEUSE>2.0.CO;2

  • Le Heron, D.P., Vandyk, T., 2019. A slippery slope for Cryogenian diamictites? The Depositional Record, 5, 306-321. https://doi.10.1002/dep2.67

  • Le Heron, D.P., Cox, G.M., Trundley, A.E., Collins, A. 2011. Sea ice free conditions during the Sturtian glaciation (early Cryogenian), South Australia. Geology, 39, 31–34. https://doi.org/10.1130/G31547.1

  • Le Heron, D.P., Busfield, M.E., Kamona, A.F., 2013. Interglacial on snowball Earth? Dynamic ice behaviour revealed in the Chuos Formation, Namibia. Sedimentology, 60, 411–427. https://doi.org/10.1111/j.1365-3091.2012.01346.x

  • Le Heron, D.P., Tofaif, S., Vandyk, T., Ali, D.O., 2017. A diamictite dichotomy: glacial conveyor belts and olistostromes in the Neoproterozoic of Death Valley, California, USA. Geology, 45, 31–34. https://doi.org/10.1130/G38460.1

  • Le Heron, D.P., Busfield, M.E., Ali, D.O., Al Tofaif, S., Vandyk, T.M. 2018. The Cryogenian record in the southern Kingston Range, California: the thickest Death Valley succession in the hunt for a GSSP. Precambrian Research, 319, 158-172. https://doi.org/10.1016/j.precamres.2017.07.017

  • Le Heron, D.P., Busfield, M.E., Ali, D.O., Vandyk, T., Tofaif, S., 2019. A tale of two rift shoulders, and two ice masses: the Cryogenian glaciated margin of Death Valley, California. In: Le Heron, D.P., Hogan, K.A., Phillips, E.R., Huuse, M., Bus-field, M.E. Graham, A.G.C. (eds.), Glaciated Margins: The Sedimentary and Geophysical Archive. Geological Society, London, Special Publications, 475, 35-52. https://doi.org/10.1144/SP475.11

  • Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton South China and correlation with other continents: evidence for mantle superplume that broke up Rodinia. Precambrian Research, 122, 85-109. https://doi.org/10.1016/S0301-9268(02)00208-5

  • Li, Z.-X., Evans, D.A.D., Halverson, G.P., 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwana-land. Sedimentary Geology, 294, 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016

  • Lund, K., Aleinikoff, J.N., Evans, K.V., Fanning, C.M., 2003. SHRIMP U-Pb geochronology of Neoproterozoic Winder-mere Supergroup, central Idaho: implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geological Society of American Bulletin, 115, 349-372. https://doi.org/10.1130/0016-7606(2003)115<0349:-SUPGON>2.0.CO;2

  • Link, P.K., Christie-Blick, N., Devlin, W.J., Elston, D.P., Horodyski, R.J., Levy, M., Miller, J.M.G., Pearson, R.C., Prave, A., Stewart, J.H., Winston, D., Wright, L.A., Wrucke, C.T., 1993. Middle and late Proterozoic stratified rocks of the western U.S. Cordillera, Colorado Plateau and Basin Range Province. In Reed, J.C., et al. (eds.), Precambrian: Coterminous U.S. Geology of North America, v. C-2, 463-595. Geological Society of America, Boulder, Colorado. https://doi.org/10.1130/DNAG-GNA-C2.463

  • Ma, G., Lee, H., Zhang, Z., 1984. An investigation of the limits of the Sinian system in South China, Bulletin of the Yichang Institute of Geology and Mineral Resources. Chin., Acad., Geol. Sci., 8, 1-29.

  • Macdonald, F.A., Schmitz, M.D., Crowley, J.L., Roots, C.F., Jones, D.S., Maloof, A.C., Strauss, J.V., Cohen, P.A., Johnston, D.T., Schrag, D.P., 2010. Calibrating the Cryogenian. Science, 327, 1241-1243. https://doi/10.1126/science.1183325

  • Mawson, D., 1949. The Elatina glaciation. A third occurrence of glaciation evidenced in the Adelaide System. Transactions of the Royal Society of South Australia, 73, 117–121.

  • Mawson, D., Sprigg, R. C., 1950. Subdivision of the Adelaide System. Australian Journal of Science, 13, 69–72.

  • McDonough, M.R., Parrish, R.R., 1991. Proterozoic gneisses of the Malton Complex, near Valemount, British Columbia: U-Pb ages and Nd isotopic signatures. Canadian Journal of Earth Science, 23, 1202-1216. https://doi.org/10.1139/e91-108

  • MacLennan, S., Park, Y., Swanson-Hysell, N., Maloof, A., Schoene, B., Gebreslassie, M., Antilla, E., Tesema, T., Alene, M., Haileab, B., 2018. The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation. Geology, 46, 539–542. https://doi.org/10.1130/G40171.1

  • Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., Müller, R.D., 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research 50, 84-134. https://doi.org/10.1016/j.gr.2017.04.001

  • Miller, N.R., Alene, M., Sacchi, R., Stern, R.J., Conti, A., Kröner, A., Zuppi, G., 2003. Significance of the Tambien Group (Tigrai, N. Ethiopia) for Snowball Earth Events in the Arabian-Nubian Shield. Precambrian Research, 121, 263-283. https://doi.org/10.1016/S0301-9268(03)00014-7

  • Partin, C.A., Sadler, P.M., 2016. Slow net sediment accumulation sets snowball Earth apart from all younger glacial episodes. Geology, 44, 1019–1022. https://doi.org/10.1130/G38350.1

  • Powell, R.D., Cooper, J.M., 2002. A glacial sequence strati-graphic model for temperate, glaciated continental shelves. In: Dowdeswell, J.A., O’Cofaigh, C. (eds.), Glacier-influenced sedimentation on high-latitude continental margins. Geological Society of London, Special Publication, 203, 215–244. https://doi.org/10.1144/GSL.SP.2002.203.01.12

  • Prave, A. R., 1999. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27, 339-324. https://doi.org/10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2

  • Preiss, W.V., 1987, (ed.). The Adelaide Geosyncline-late Proterozoic stratigraphy, sedimentation, paleontology and tectonics: South Australia Geology Survey Bulletin, 53, 438.

  • Preiss, W.V., Drexel, J.F. Reid, A.J., 2009. Definition and age of the Kooringa Member of the Skillogalee Dolomite: host for Neoproterozoic (c. 790 Ma) porphyry-related copper mineralisation at Burra. MESA Journal, 55, 19-33.

  • Preiss, W.V., Gostin, V.A., McKirdy, D.M., Ashley, P.M., Williams, G.E., Schmidt, P.W., 2011. The glacial succession of Sturtian age in South Australia: the Yudnamutana Subgroup. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir 36, 701-712. https://doi.org/10.1144/M36.69

  • Rooney, A.D., Chew, D.M., Selby, D., 2011. Re-Os Geo-chronology of the Neoproterozoic Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematics. Precambrian Research, 185, 202-214. https://doi.org/10.1016/j.precamres.2011.01.009

  • Rooney, A.D., Macdonald, F.A., Strauss, J.V., Dudás, F.Ö., Hall-mann, C., Selby, D., 2014. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proceedings of the National Academy of Science, 111, 51-56. https://doi.org/10.1073/pnas.1317266110

  • Rooney, A.D., Strauss, J.V., Brandon, A.D. Macdonald, F.A., 2015. A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology, 43, 459–462. https://doi.org/10.1130/G36511.1

  • Ross, G.M., Villeneuve, M.E., 1997. U-Pb geochronology of stranger stones in Neoproterozoic diamictites, Canadian Cordillera: implications for provenance and age of deposition. Geological Survey of Canada, Current Research 1997-F, 141-155. https://doi/10.4095/209100

  • Schaefer, B.F., Burgess, J.M., 2003. Re-Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: implications for the “snowball Earth”. Journal of the Geological Society of London 160, 825-828. https://doi.org/10.1144/0016-764903-050

  • Shields, G.A., Halverson, G.P., Porter, S.M., 2018. Descent into the Cryogenian. Precambrian Research, 319, 1-5. https://doi.org/10.1016/j.precamres.2018.08.015

  • Strauss, J.V., Rooney, A.D., Macdonald, F.A., Brandon, A.D., Knoll, A.H., 2014. 740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy: Geology, 42, 659-662. https://doi.org/10.1130/G35736.1

  • Spence, G.H., Le Heron, D.P., Fairchild, I.J., 2016. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 63, 253-306. https://doi.org/10.1111/sed.12261

  • Tadesse, T., Hoshimo, M., Suzuki, K., Iizumi, S., 2000. Sm-Nd, Rb-Sr and Th-U-Pb zircon ages of syn- and post-tectonic granitoids from the Axum area of Northern Ethiopia. Journal of Africa Earth Sciences, 30, 313-327. https://doi.org/10.1016/S0899-5362(00)00022-1

  • Thompson, M.D., Bowring, S.A., 2000. Age of the Squantum “tillite”, Boston Basin, Massachusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science, 300, 630-655. 10.2475/ajs.300.8.630

  • Tofaif, S., Vandyk, T., Le Heron, D.P., Melvin, J. 2019. Glaciers, flows, and fans: Origins of a Neoproterozoic diamictite in the Saratoga Hills, Death Valley, California. Sedimentary Geology, 385, 79-95. https://doi.org/10.1016/j.sedgeo.2019.03.003

  • Tollo, R.P., Aleinkoff, J.N., 1996. Petrology and U-Pb geo-chronology of the Robertson River igneous suite, Blue Ridge Province, Virginia- evidence for multistage magmatism associated with an early episode of Laurentian rifting. American Journal of Science, 296, 1045-1090. https://doi/10.2475/ajs.296.9.1045

  • Williams, G.E., Gostin, V.A., McKirdy, D.M., Preiss, W.V., Schmidt, P.W., 2011. The Elatina glaciation (late Cryogenian), South Australia. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.), The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoir 36, 713–721. https://doi.org/10.1144/M36.70

  • Xu, B., Jang, P., Zheng, H., Zou, H., Zhang, L., Liu, D., 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwestern China: Implications for the break up of Rodinia supercontinent and glaciations: Precambrian Research, 136, 107-123. https://doi.org/10.1016/j.precamres.2004.09.007

  • Xu, B., Xiao, S., Chen, Y., Li, Z-X., Song, B., Liu, D., Zhou, C., Yuan, X., 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China, Precambrian Research, 168, 247-258. https://doi.org/10.1016/j.precamres.2008.10.008

  • Yang, J., Xue, Y., Tao, X., 1994, Sm-Nd radiometric dating of the Doushantuo Formation, south China. Chinese Science Bulletin, 39, 65-68.

  • Yin, C., Tang, F., Liu, Y., Gao, L., Yang, Z., Wang, Z., Liu, P., Xing, Y., Song, B., 2005. New U-Pb zircon ages from the Ediacaran (Sinian) System in the Yangtze Gorges: Constraints on the age of Miaohe biota and Marinoan glaciation. Geological Bulletin of China, 24, 393-400.

  • Yin, C., Tang, F., Liu, Y., Gao, L., Liu, P., Xing, Y., Yang, Z., Wan, Y., Wang, Z., 2005. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: constraint on the age of Marinoan glaciation. Episodes, 28, 48-49.

  • Zhang, Q.R., Li, X.H., Feng, L.J., Huang, J., Song, B., 2008. A new constraint on the onset of Neoproterozoic glaciations in the Yangtze platform, South China. Journal of Geology, 116, 423-429.

  • Zhang, S., Jiang, G., Song, B., Kennedy, M.J., Christie-Blick, N., 2005. U-Pb sensitive high resolution ion microprobe ages from the Doushantuo Formation in China: constraints on late Neoproterozoic glaciations. Geology, 33, 473-476.

  • Zhang, S., Jiang, G., Han, Y., 2008. The age of the Nantuo Formation and Nantuo glaciation in south China. Terra Nova, 20, 289-294.

  • Zhang, S.H., Jiang, G.Q., Dong, J., Han, Y.G., Wu, H.C., 2008. New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group: Implications for rifting and stratigraphic erosion associated with the early Cryogenian (Sturtian) glaciation in south China. Science in China Series D: Earth Sciences, 51, 1537-1544.

  • Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., Chen, Z., 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32, 437-440.

  • Zhou, C., Huyskens, M.H., Lang, X., Xiao, S., Yin, Q.-Z., 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47, 251–254.

OPEN ACCESS

Journal + Issues

Search