A study case for the analysis of asymptotic expansions beyond the tQSSA for inhibitory mechanisms in enzyme kinetics.

A. M. Bersani 1 , A. Borri 2 , A. Milanesi 3 , G. Tomassetti 3 , and P. Vellucci 4
  • 1 Department of Mechanical and Aerospace Engineering, Sapienza University, 00184, Roma
  • 2 Institute for System Analysis and Computer Science “Antonio Ruberti” (IASI-CNR), , 00185, Roma, Italy
  • 3 Department of Basic and Applied Sciences for Engineering, Sapienza University, 00161, Roma
  • 4 Department of Economics, Roma Tre University, 00145, Rome, Italy

Abstract

In this paper we study the model of the chemical reaction of fully competitive inhibition and determine the appropriate parameter (related to the chemical constants of the model), for the application of singular perturbation techniques. We determine the inner and the outer solutions up to the first perturbation order and the uniform expansions. Some numerical results are discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. J. Berg, J. Tymoczko, and L. Stryer, Biochemistry. W. H. Freeman New York, 2002.

  • 2. J. Murray, Mathematical Biology: An introduction. Springer-Verlag New York, 2002.

  • 3. J. Borghans, R. de Boer, and L. Segel, Extending the quasi-steady state approximation by changing variables, Bull.Math.Biol., vol. 58, pp. 43–63, 1996.

  • 4. A. M. Bersani, E. Bersani, G. Dell’Acqua, and M. G. Pedersen, New trends and perspectives in nonlinear intracellular dynamics: one century from michaelis–menten paper, Continuum Mechanics and Thermodynamics, vol. 27, no. 4, pp. 659–684, 2015.

  • 5. A. Cornish-Bowden, One hundred years of michaelis-menten kinetics, Perspectives in Science, vol. 4, pp. 3 – 9, 2015.

  • 6. F. G. Heineken, H. M. Tsuchiya, and R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosc., vol. 1, pp. 95–11, 1967.

  • 7. L. A. Segel and M. Slemrod, The quasi steady-state assumption: a case study in pertubation., Siam Rev., vol. 31, pp. 446–477, 1989.

  • 8. G. Dell’Acqua and A. M. Bersani, A perturbation solution of michaelis–menten kinetics in a “total” framework, Journal of Mathematical Chemistry, vol. 50, no. 5, pp. 1136–1148, 2012.

  • 9. J. Carr, Applications of Center Manifold Theory. Springer-Verlag New York, Heidelberg, Berlin, 1981.

  • 10. S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, vol. 105. Springer-Verlag New York, 1994.

  • 11. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, vol. 2. Springer-Verlag New York, 2003.

  • 12. F. C. Hoppensteadt, Singular perturbations on the infinite interval, Transactions of the American Mathematical Society, vol. 123, no. 2, pp. 521–535, 1966.

  • 13. A. Tikhonov, On the dependence of the solutions of differential equations on a small parameter (in russian), Mat. Sb. (N.S.), vol. 22, no. 2, pp. 193 – 204, 1948.

  • 14. A. Tikhonov, On a system of differential equations containing parameters (in russian), Mat. Sb. (N.S.), vol. 27, pp. 147–156, 1950.

  • 15. A. Tikhonov, Systems of differential equations containing small parameters in the derivatives (in russian), Mat. Sb. (N.S.), vol. 31, no. 3, pp. 575–586, 1952.

  • 16. A. B. Vasil’eva, Asymptotic behaviour of solutions to certain problems involving non-linear differential equations containing a small parameter multiplying the highest derivatives (in russian), Russian Mathematical Surveys, vol. 18, no. 3, pp. 13–84, 1963.

  • 17. W. Wasov, Asymptotic Expansions for Ordinary Di erential Equations. Wiley-InterScience, 1965.

  • 18. I. Dvořák and J.Šiška, Analysis of metabolic systems with complex slow and fast dynamics, Bulletin of Mathematical Biology, vol. 51, no. 2, pp. 255–274, 1989.

  • 19. A. Kumar and K. Josić, Reduced models of networks of coupled enzymatic reactions, Journal of Theoretical Biology, vol. 278, no. 1, pp. 87 – 106, 2011.

  • 20. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Di erential Equations, vol. 31, no. 1, pp. 53–98, 1979.

  • 21. A. J. Roberts, Model emergent dynamics in complex systems. SIAM, 2015.

  • 22. B. O. Palsson and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. i. on michaelis-menten kinetics, Journal of Theoretical Biology, vol. 111, no. 2, pp. 273 – 302, 1984.

  • 23. B. O. Palsson, R. Jamier, and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. ii. simple dimeric enzymes, Journal of Theoretical Biology, vol. 111, no. 2, pp. 303 – 321, 1984.

  • 24. B. O. Palsson, H. Palsson, and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. iii. linear reaction sequences, Journal of Theoretical Biology, vol. 113, no. 2, pp. 231 – 259, 1985.

  • 25. B. O. Palsson, On the dynamics of the irreversible michaelis-menten reaction mechanism, Chemical Engineering Science, vol. 42, no. 3, pp. 447 – 458, 1987.

  • 26. A. Bersani, A. Borri, A. Milanesi, and P. Vellucci, Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics, Communications in Applied and Industrial Mathematics, vol. 8, no. 1, pp. 81–102, 2017.

  • 27. S. Schnell and C. Mendoza, Time-dependent closed form solutions for fully competitive enzyme reactions, Bulletin of Mathematical Biology, vol. 62, no. 2, pp. 321–336, 2000.

  • 28. S. Schnell and C. Mendoza, Closed form solution for time-dependent enzyme kinetics, Journal of Theoretical Biology, vol. 187, no. 2, pp. 207 – 212, 1997.

  • 29. M. G. Pedersen, A. M. Bersani, and E. Bersani, The total quasi-steady-state approximation for fully competitive enzyme reactions, Bulletin of Mathematical Biology, vol. 69, no. 1, pp. 433–457, 2006.

  • 30. M. G. Pedersen, A. M. Bersani, and E. Bersani, Quasi steady-state approximations in complex intra-cellular signal transduction networks – a word of caution, Journal of Mathematical Chemistry, vol. 43, no. 4, pp. 1318–1344, 2008.

  • 31. S. Schnell and P. Maini, Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations, Mathematical and Computer Modelling, vol. 35, no. 1-2, pp. 137–144, 2002.

  • 32. C.-C. Lin and L. A. Segel, Mathematics applied to deterministic problems in the natural sciences, vol. 1. Siam, 1988.

  • 33. M. G. Pedersen, A. M. Bersani, E. Bersani, and G. Cortese, The total quasi-steady-state approximation for complex enzyme reactions, Mathematics and Computers in Simulation, vol. 79, no. 4, pp. 1010 – 1019, 2008.

  • 34. A. Tzafriri and E. Edelman, The total quasi-steady-state approximation is valid for reversible enzyme kinetics, Journal of Theoretical Biology, vol. 226, no. 3, pp. 303 – 313, 2004.

  • 35. M. Sabouri-Ghomi, A. Ciliberto, S. Kar, B. Novak, and J. J. Tyson, Antagonism and bistability in protein interaction networks, Journal of Theoretical Biology, vol. 250, no. 1, pp. 209 – 218, 2008.

  • 36. S. Rubinow and J. L. Lebowitz, Time-dependent michaelis-menten kinetics for an enzyme-substrate-inhibitor system, Journal of the American Chemical Society, vol. 92, no. 13, pp. 3888–3893, 1970.

  • 37. A. Bersani, E. Bersani, and L. Mastroeni, Deterministic and stochastic models of enzymatic networks-applications to pharmaceutical research, Computers & Mathematics with Applications, vol. 55, no. 5, pp. 879 – 888, 2008. Modeling and Computational Methods in Genomic Sciences.

  • 38. A. Ciliberto, F. Capuani, and J. J. Tyson, Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation, PLOS Computational Biology, vol. 3, pp. 1–10, 03 2007.

  • 39. M. G. Pedersen and A. M. Bersani, Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity, Journal of Mathematical Biology, vol. 60, no. 2, pp. 267–283, 2010.

  • 40. C. Kwang-Hyun, S. Sung-Young, K. Hyun-Woo, O. Wolkenhauer, B. McFerran, and W. Kolch, Mathematical modeling of the influence of rkip on the erk signaling pathway, in Computational Methods in Systems Biology (C. Priami, ed.), pp. 127–141, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

  • 41. S. MacNamara and K. Burrage, Krylov and steady-state techniques for the solution of the chemical master equation for the mitogen-activated protein kinase cascade, Numerical Algorithms, vol. 51, no. 3, pp. 281–307, 2009.

  • 42. G. Dell’Acqua and A. M. Bersani, Quasi-steady state approximations and multistability in the double phosphorylation-dephosphorylation cycle, in Biomedical Engineering Systems and Technologies (A. Fred, J. Filipe, and H. Gamboa, eds.), pp. 155–172, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

  • 43. G. Dell’Acqua and A. M. Bersani, Bistability and the complex depletion paradox in the double phosphorylation-dephosphorylation cycle., in BIOINFORMATICS, pp. 55–65, 2011.

  • 44. A. M. Bersani, G. Dell’Acqua, and G. Tomassetti, On stationary states in the double phosphorylation-dephosphorylation cycle, AIP Conference Proceedings, vol. 1389, no. 1, pp. 1208–1211, 2011.

  • 45. A. Bersani, A. Borri, A. Milanesi, G. Tomassetti, and P. Vellucci, Asymptotic analysis of the double phosphorylation mechanism, in a tqssa framework. in preparation.

  • 46. A. Bersani, A. Borri, A. Milanesi, G. Tomassetti, and P. Vellucci, Uniform asymptotic expansions beyond the tqssa for the goldbeter-koshland switch. in preparation.

  • 47. A. R. Tzafriri and E. R. Edelman, Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the michaelis-menten constant, Journal of Theoretical Biology, vol. 245, no. 4, pp. 737 – 748, 2007.

  • 48. H. P. Fischer, Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior, Alcohol Research & Health, vol. 31, no. 1, p. 49, 2008.

OPEN ACCESS

Journal + Issues

Search