Nanotechnology Considerations for Poultry and Livestock Production Systems – A Review

Mohamed I. El Sabry 1 , Kenneth W. McMillin 2 ,  and Cristina M. Sabliov 3
  • 1 Animal Production Department, Faculty of Agriculture, Cairo University 6 El Gamma Street, 12613, , Giza, Egypt
  • 2 School of Animal Sciences, Louisiana State University, Agricultural Center, Baton Rouge, 70803, , Louisiana, USA
  • 3 Biological and Agricultural Engineering Department, Louisiana State University, Agricultural Center, Baton Rouge, 70803, , Louisiana, USA

Abstract

The global animal productivity should proportionally increase to meet the food needs of a growing population. This article presents an overview of the current and promising nano-applications in poultry and livestock production systems that could offer opportunities for improved efficiencies and productivity. Some basic information on nanotechnology and the economics of nanotechnology is provided. Poultry and animal production systems, current situation and available tools and techniques are presented in parallel with animal health care, animal nutrition, animal shelter and food processing nano-applications and their advantages. These applications are directly or indirectly related to the human food chain and may affect the food safety and food quality. Lastly, the expected risks and hazards related to nano-application in poultry and livestock production systems that can affect animal, human and environment are described. It is concluded that nanoapplications have the potential to provide smarter solutions for various applications in the poultry and livestock production systems, which can help in reducing costs and enhancing the final product quality. However, concerns over safety of some nano-applications hamper their immediate implementation. Extensive risk assessments should be conducted to ensure the safety of the nanoproducts before making them available for animal or human use.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Allafchian A.R., Mirahmadi- Zare S.Z., Jalali S.A.H., Hashemi S.S., Vahabi M.R. (2016). Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J. Nanostruct. Chem., 6: 129-135.

  • Bumbudsanpharoke N., Ko S. (2015). Nano-food packaging: an overview of market, migration research, and safety regulations. J. Food Sci., 80: 910-923.

  • Cai C., Qu X.Y., Wei Y.H., Yang A.Q. (2013). Nano-selenium: nutritional characteristics and application in chickens (In Chinese with English abstract). Chin. J. Anim. Nutr., 12: 2818-2823. doi:

    • Crossref
    • Export Citation
  • Cai Z., Wang Y., Zhu L.J., Liu Z.Q. (2010). Nanocarriers:ageneral strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr. Drug Metab., 11: 197-207.

  • Chaudhry Q., Castle L. (2011). An overview of opportunities and challenges for developing countries. Trends Food Sci. Technol., 22: 595-603.

  • Chen J., Poon C. (2009). Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ., 44: 1899-1906.

  • Cruz-Romero M.C., Murphy T., Morris M., Cummins E., Kerry J.P. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34: 393-397.

  • Cummings T.S. (2006). Stakeholder position paper: Poultry. Preventive Vet. Med., 73: 209-212.

  • De La Rua- Domenech R. (2006). Human Mycobacterium bovis infection in the United Kingdom: incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis. Tuberculosis, 86: 77-109.

  • de Wit C. (2009). New nanomaterials: environmental risks and possibilities. Environmental Comm., Royal Swedish Academy of Sciences. Department of Innovation, Industry, Science and Research (DIISR) - Nanotechnology executive sum mary report, “Australian community attitudes held about nanotechnology - trends 2005 to 2011. (2011). http://www.industry.gov.au/industry/IndustrySectors/nanotechnology/Publications/Documents/NanotechnologyPublicAwareness2011.pdf

  • Des Rieux A., Fievez V., Garinot M., Schneider Y.J., Préat V. (2006). Nano-particles as potential oral delivery systems of proteins and vaccines: Amechanistic approach. J. Controlled Release, 116: 1-27.

  • Duncan T.V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci., 363: 1-24.

  • El Sabry M.I., Atta A.M.M., Tzschentke B., Gharib H.B.A., Stino F.K.R. (2012). Potential use of Interleukin-2-rich supernatant adjuvant in Fayoumi hens. Arch. Gefluegelkd., 76: 162-167.

  • Emami T., Madani R., Rezayat S.M., Golchinfar F., Sarkar S. (2012). Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. J. Appl. Poultry Res., 21: 563-566.

  • FAO/WHO (2010). Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications, Meeting report Food and Agriculture Organization of the United Nations and World Health Organization Rome 2010. http://apps.who.int/iris/bitstream/10665/44245/1/9789241563932_eng.pdf

  • Feng S.S., Mei L., Anitha P., Gan C.W., Zhou W. (2009). Poly (lactide)-vitamin Ederivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials, 30: 3297-3306.

  • Food and Drug Administration (FDA), Department of health and human services fiscal year 2017 Report, www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/.../UCM485237.pdf (accessed April 2016).

  • Galindo- Rodriguez S.A., Allemann E., Fessi H., Doelker E. (2005). Polymeric nanoparticles for oral delivery of drugs and vaccines:acritical evaluation of in vivo studies. Crit. Rev. Ther. Drug Carrier Syst., 22: 419-464.

  • Gatti A.S., Montanari S. (2008). Nanopathologies: The health impact of nanoparticles. Pan Stanford Publishing, Singapore, pp. 1-298.

  • Grodzik M., Sawosz F., Sawosz E., Hotowy A., Wierzbicki M., Kutwin M., Ja - worski S., Chwalibog A. (2013). Nano-nutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles. Int. J. Mol. Sci., 20: 23033-23044.

  • Hansen S.F. (2009). Regulation and Risk Assessment of Nanomaterials - Too Little, Too Late? Ph D Thesis. Technical University of Denmark, Lyngby, Denmark, pp. 111.

  • Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., De Jong W., Filser J., Hensten A., Kneuer C., Maillard J.-Y. (2015). Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater. Today, 18: 122-123.

  • Helmut Kaiser Consultancy (2010). Study: Nanotechnology in Food and Food Processing Industry Worldwide 2011-2012-13-14-2015-2020-2025. http://www.hkc22.com/Nanofood.html

  • Hilton L.S., Bean A.G.D., Lowenthal J.W. (2002). The emerging role of avian cytokines as immune therapeutics and vaccine adjuvants. Vet. Immunol. Immunopathol., 85: 119-128.

  • Huang S., Wang L., Liu L., Hou Y. (2015). Nanotechnology in agriculture, livestock, and aquaculture in China. Areview. Agron. Sustain. Dev. 35: 369. https://doi.org/10.1007/s13593-014-0274-x.

  • Humblet M.F., Boschiroli M.L., Saegerman C. (2009). Classification of worldwide bovine tuberculosis risk factors in cattle:astratified approach. Vet. Res., 40: 40-50.

  • Illuminaria.nano DETECT Platform.http://illuminarialk.com//successfulprojects.html (accessed February 2016).

  • Innovative Research and Products Inc. (2010). Nano-enabled packaging for the food and beverage industry -aglobal technology, industry and market analysis. http://www.innoresearch.net/report_summary.aspx?id=72&pg=93&pd=3/1/2010

  • Institute of Food Science and Technology Trust Fund (IFST), Nanotechnology information statement. www.ifst.org/uploadedfiles/cms/store/attachments/nanotechnology.pdf

  • Jain A., Reddy V.A., Muntimadugu E., Khan W. (2014). Nanotechnology in vaccine delivery. Curr. Trends Pharm. Sci., pp. 17-27.

  • Jelle B.P. (2011). Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities. Energ. Buildings., 43: 2549-2563.

  • Kaittanis C., Santra S., Perez J.M. (2010). Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Delivery Rev., 62: 408-423.

  • Kastenhofer K. (2011). Risk assessment of emerging technologies and post-normal science. Sci., Technol. & Human Values, pp. 307-333.

  • Li L., Zhang Z. (2016). Biosynthesis of gold nanoparticles using green alga Pithophora oedogonia with their electrochemical performance for determining carbendazim in soil. Int. J. Electrochem. Sci., 11: 4550 - 4559; DOI: 10.20964/2016.06.13.

  • Liu W., Wu Y., Wang C., Li H.C., Wang T., Liao C.Y., Cui L., Zhou Q.F., Yan B., Jiang G.B. (2010). Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology, 4: 319-330.

  • Lobue P.A., Enarson D.A., Thoen C.O. (2010). Tuberculosis in humans and animals: an overview. Int. J. Tuberculosis and Lung Disease, 14: 1075-1078.

  • Loghman A., Iraj S.H., Naghi D.A., Pejman M. (2012). Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. Afr. J. Biotechnol., 11: 6207-6211.

  • Lowenthal J.W., Johnson M.A., Tyack S.G., Hilton L.S., Bean A.G.D. (2005). Oral delivery of novel therapeutics: development ofafowl adenovirus vector expressing chicken IL-2 and MGF. World’s Poultry Sci. J., 61: 87-94.

  • Mungroo N.A., Neethirajan S. (2014). Biosensors for the detection of antibiotics in poultry industry (Review). Biosensors, 4: 472-493.

  • Muthoosamy K., Bai R.G., Abubakar I.B., Sudheer S.M., Lim H.N., Loh H.S., Huang N.M., Chia C.H., Manickam S. (2015). Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int. J. Nanomed., 10: 1505-1519.

  • National Nanotechnology Initiative. (2011). Environmental Health and Safety Research Strategy. http://www.nano.gov/sites/default/files/pub_resource/nni_2011_ehs_research_strategy.pdf

  • Navarro S., Darensbourg C., Cross L., Stout R., Coulon D., Astete C.E., Mor- gan T., Sabliov C.M. (2014). Biodistribution of poly (lactic-co-glycolic) acid (PLGA) and PLGA/chitosan nanoparticles after repeat-dose oral delivery in F344 rats for seven days. Ther. Delivery, 5: 1191-1201.

  • Navarro S., Mo rgan T., Astete C.E., Stout R., Coulon D., Mottram P., Sabliov C.M. (2016). Biodistribution and toxicity of orally administered poly (lactic-co-glycolic) acid nanoparticles to F344 rats for 21 days. Nanomedicine, 11: 1653-1669; DOI: 10.2217/nnm-2016-0022.

  • Nel A.E., Mädler L., Velegol D., Xia T., Hoek E.M.V., Somasundaran P., Klaessig F., Castranova V., Thompson M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 8: 543-557.

  • Organization for Economic Co-operation and Development OECD (2010). Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials. No. 20 Current developments/activities on the safety of manufactured nanomaterials, Tour de Table at the 6th Meeting of the Working Party on Manufactured Nanomaterials. Paris, France, 28-30.10. 2009, pp. 84.

  • Otari S.V., Patil R.M., Nadaf N.H., Ghosh S.J., Pawar S.H. (2012). Green biosynthesis of silver nanoparticles from an Actinobacteria rhodococcus sp. Mater. Lett., 72: 92-94.

  • Pacheco-Torgal F., Labrincha J.A. (2013). The future of construction materials research and the seventh UN Millennium Development Goal: Afew insights. Constr. Build. Maters., 40: 729-737.

  • Pacheco-Torgal F., Rasmussen E.S., Granqvist C.G., Ivanov V., Kaklau - skas H.A., Makonin S. (2016). Start-Up Creation: The Smart Eco-Efficient Built Environment: 9 - High performance thermal insulation materials for buildings. Jelle B.P. (Eds) Academic Press Elsevier. pp. 129-181.

  • Peek L.J., Middaugh C.R., Berkland C. (2008). Nanotechnology in vaccine delivery, Adv. Drug Delivery Rev., 60: 915-928.

  • Peled N., Ionescu R., Nol P., Barash O., Mccollum M., Vercauteren K., Koslow M., Stahl R., Rhyan J., Haick H. (2012). Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis. Sensors and Actuators B., 171-172: 588-594.

  • Prakash P., Gnanaprakasama P., Emmanuel R., Arokiyaraj S., Saravanan M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf., B.,108: 255-259.

  • Ray P.C., Yu H., Fu P.P. (2009). Toxicity and environmental risks of nanomaterials: challenges and future needs. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 27: 1-35; DOI: 10.1080/10590500802708267.

  • Researchers Guelph University (2015). Researchers create tool to predict avian flu outbreaks. http://phys.org/news/2015-04-tool-avian-flu-outbreaks.htm

  • Roco M.C., Mirkin C.A., Hersam M.C. (2010). Nanotechnology research directions for societal needs in 2020: retrospective and outlook. National Science Foundation/World Technology Evaluation Center Report. Berlin and Boston, Springer. http://www.wtec.org/nano2/Nanotechnology_Research_Directions_to_2020

  • Satterfield T., Kandlikar M., Beaudrie C.E.H., Conti J., Harthorn B.H. (2009). Anticipating the perceived risk of nanotechnologies. Nat. Nanotechnol., 4: 752-758.

  • Sauer U.G. (2009). Animal and non-animal experiments in nanotechnology - the results ofacritical literature survey. ALTEX, 26: 109-128.

  • Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2010). Scientific basis for the definition of“nanomaterial”, 46 pp. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032.pdf

  • Scientific Comittee on Energing and Newly Identified Health Risks (SCENIHR) (2016). Final Opinion on Additives used in tobacco products, 131 pp. http://ec.europa.eu.health/scientific_comittees/emerging/docs/scenihr_o_pdf

  • Scott A., Vadalasetty K.P., Sawosz E., Łukasiewicz M., Vadalasetty R.K.P., Ja - worski S., Chwalibog A. (2016). Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim. Feed Sci. Technol., 220: 151-158.

  • Scott N.R. (2005). Nanotechnology and animal health. Revue scientifique et technique (International Office of Epizootics), 24: 425-432.

  • Sekhon B.S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl., 7: 31-53.

  • Shi L., Xun W., Yue W., Zhang C., Ren Y., Liu Q., Wang Q., Shi L. (2011). Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim. Feed Sci. Technol., 163: 136-142.

  • Shi Y.H., Xub Z.R., Feng J.L., Wang C.Z. (2006). Efficacy of modified montmorillonite to reduce the toxicity of aflatoxins in chickens. Anim. Feed Sci. Technol., 129: 138-148.

  • Shi L.G., Yang R.J., Yue W.B., Xun W.J., Zhang C.X., Ren Y.S., Shi L., Lei F.L. (2010). Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity and testis ultrastructure in male Boer goats. Anim. Reprod. Sci., 118: 248-254.

  • Siegrist M., Cousin M.E., Kastenholz H., Wiek A. (2007). Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust. Appetite, 49: 459-466.

  • Simon J.K., Edelman R. (2006). Clinical evaluation of adjuvants: Immunopotentiators in modern vaccines. Schijns V.E.J.C., O’Hagan D.T. (Eds). Academic Press Elsevier. pp. 319-342

  • Simon L.C., Sabliov C.M., Stout R.W. (2016). Bioavailability of orally delivered alpha-tocopherol by poly (lactic-co-glycolic) acid (PLGA) nanoparticles and chitosan covered PLGAnanoparticles in F344 rats. Nanobiomedicine, 3; DOI: 10.5772/63305.

  • Swain P.S., Rajendran D., Rao S.B.N., Dominic G. (2015). Preparation and effects of nano mineral particle feeding in livestock: Areview. Vet. World, 8: 888-891. http://doi.org/10.14202/vetworld.2015.

  • The Scientific Committees on Consumer Safety (2013). Health and environmental risks, emerging and newly identified health risks, rules of procedure, 51 pp. http://ec.europa.eu/health/scientific_committees/docs/rules_procedure_2013_en.pdf

  • Wang M.Q., Xu Z.R. (2004). Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian-Austral. J. Anim. Sci., 17: 1118-1122.

  • Wang M.Q., Xu Z.R., Zha L.Y., Lindemann M.D. (2007). Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Anim. Feed Sci. Technol., 139: 69-80.

  • Wijnhoven S.W.P., Willie J.G.M., Peijnenburg C.A., Werner I., Agnes G., Eve- lyn H.W., Boris R., Bisschops J., Gosens I., De Meent D.V., Dekkers S., Wim H., De J., Van Zijverden M., Sips A.J.A.M. Geertsma R.E. (2009). Nanosilver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3: 109-138.

  • Xun W.J., Shi L.G., Yue W.B., Zhang C.X., Ren Y.S., Liu Q. (2012). Effect of high-dose nanoselenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol. Trace Elem. Res., 150: 130-136.

  • Zhao F., Zhao Y., Wang C. (2008). Activities related to health, environmental and societal aspects of nanotechnology in China. J. Cleaner Prod., 16: 1000-1002.

  • Zhao L., Seth A., Wibowo N., Zhao C.X., Mitter N., Yu C., Middelberg A.P.J. (2014). Nanoparticle vaccines. Vaccine, 32: 327-337.

OPEN ACCESS

Journal + Issues

Search