Browse

You are looking at 1 - 10 of 883 items for :

  • Materials Sciences, other x
Clear All
Open access

Esra Yildiz

Abstract

In the present study, ZrO2 co-doped with Gd3+/Sm3+ and Gd3+/Er3+ ions have been synthesized using Pechini method. Phase composition, morphology and photoluminescence properties of the synthesized phosphors were investigated by using X-ray powder diffraction (XRD), differential thermal analysis/thermal gravimetry (DTA/TG), scanning electron microscopy (SEM) and photoluminescence spectrofluorometer (PL). After heating at 1200 °C, XRD revealed that the phosphors were crystallized as monoclinic and tetragonal multiphases. SEM images indicated that the phosphors consist of fine and spherical grains with a size around 200 nm to 250 nm. Luminescence studies of these phosphors have been carried out on the emission and excitation, along with lifetime measurements.

Open access

D. Siva Kumar, K. Chandra Babu Naidu, M. Mohamed Rafi, K. Prem Nazeer, A. Ayisha Begam and G. Ramesh Kumar

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized using co-precipitation method. Their microstructure and dielectric properties were studied. The sugar solutions like glucose, fructose and sucrose were used as stabilizers to control the size of the SPIONs. The crystal structure and grain size of the particles were determined by X-ray diffraction. The magnetic studies of the samples were carried out using the vibrating sample magnetometer and their surface morphology was studied by HRTEM, FE-SEM and zeta potential. The dielectric properties of glucose-SPIONs (GF), fructose-SPIONs (FF) and sucrose-SPIONs (SF) were investigated in the frequency range of 10 Hz to 5 MHz at selected temperatures. The FF showed a high dielectric constant of 62 at 1 MHz and the dielectric properties of SPIONs were found to have been significantly improved, especially in the low frequency regime according to the Maxwell-Wagner interfacial polarization. The AC conductivity measurements revealed that the electrical conduction depends on both frequency and temperature. Impedance analysis was carried out using Cole-Cole plot and the conduction mechanism of the studied compounds was explained. R and C values were further calculated using RC-circuit.

Open access

Yifu Zhang

Abstract

Coordination of vanadyl (VO2+) ions with 8-hydroxyquinoline (8Hq) in the interlayer space of layered silicate magadiite (mag) was realized by solid-solid intercalation. Composition, structure and morphology of this compound were studied by X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The obtained results indicate that the basal spacing of decorated mag increased after intercalation and suggest that VO-8Hq decorated into the interlayer of mag (VO-mag-8Hq) was successfully synthesized for the first time. Optical properties of VO-mag-8Hq were studied by ultraviolet-visible (UV-Vis) and photoluminescence spectroscopy (PL). The findings reveal that VO-8Hq complexes in the interlayer space exhibit extraordinary fluorescence properties and the confined space of mag influences the optical properties of VO-8Hq complexes.

Open access

B. Manoj, Ashlin M. Raj and George Thomas Chirayil

Abstract

Coal is a natural energy resource which is mainly used for energy production via combustion. Coal has nanocrystals embedded in it, formed during the coalification process, and is an ideal precursor for nano-carbon dots and diamonds. Herein, we report a facile top-down method to synthesise nanodots and diamonds of the size of 5 nm to 10 nm from three different types of coal by simple chemical leaching. TEM analysis revealed the formation of a mixture of carbon dots, graphene layers, and quantum dots in bituminous coal and sub-bituminous coal. Raman analysis confirmed the existence of synthesized nanodiamond and nano-carbon mixed phase with defects associated with it. It is concluded that graphene quantum dots, nanodiamonds, graphene sheets and carbon dots present in coal can be extracted by simple chemical treatment. These structures can be tuned to photoluminescent material for various optoelectronic applications or energy harvesting devices like super capacitors.

Open access

Izabela Stępińska, Elżbieta Czerwosz, Mirosław Kozłowski, Halina Wronka and Piotr Dłużewski

Abstract

Field emission from materials at high electric fields can be associated with unfavorable or even destructive effect on the surface of the investigated cathode. The impact of high voltage electric power supply causes locally very strong electric fields focusing on the cathode surface. It causes a number of phenomena, which can adversely affect the morphology and the structure of the cathode material. Such a phenomenon is, for example, peeling of an emissive layer from the substrate or its burnout. It results in tearing of the layer and a decrease or loss of its ability to electrons emission. The cold cathodes in a form of CNT films with various CNTs superficial distribution are obtained by physical vapor deposition followed by chemical vapor deposition. CNTs are catalyzed in pyrolytic process with xylene (CVD), by Ni in a form of nanograins (few nm in size) placed in carbonaceous matrix. These films are built of emissive CNTs - carbonaceous film deposited on different substrates. In this work, the morphology and topography of superficial changes resulting from external electric field in such films were investigated.

Open access

Y. Madhava Kumar, K. Bhyagyasree, N.O. Gopal and Ch. Ramu

Abstract

Pure and VO2+ doped methacrylic acid ethylacrylate (MAA:EA) copolymer films were prepared by using a solution casting method. Various techniques including X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy and electron paramagnetic resonance were employed for characterization of the samples. XRD patterns showed some degree of crystallinity of the doped polymer films due to interaction of the MAA:EA copolymer with VO2+. FT-IR spectral studies of pure and VO2+ doped MAA:EA copolymer films displayed significant structural changes within the doped copolymer film indicating the complexation. The optical absorbance of the pure and VO2+ doped films were measured in the 200 nm to 800 nm wavelength range. The values of the absorption edge and indirect band gaps were calculated. The optical band gap decreased with the increase of mol% of VO2+. From the EPR spectra, the spin- Hamiltonian parameters (g and A) were evaluated. The values of the spin-Hamiltonian parameters confirmed that the vanadyl ions were present in MAA:EA copolymer films as VO2+ molecular ions in an octahedral site with a tetragonal compression (C4v). The morphology of the copolymer samples was examined by scanning electron microscopy. The enhanced crystalline nature of the doped copolymer was identified from SEM analysis.

Open access

J. Warycha and W. Mielcarek

Abstract

Oxide varistors are made of inhomogeneous material whose properties are determined by active grain boundaries. It is essential that in the microstructure of a varistor only active grain boundaries are present as only such boundaries are involved in the process of conduction. Commercial varistors are characterized by a microstructure with a large amount of electrically inactive areas which include zinc-antimony spinel, bismuth oxide, and pores. Studies on elimination of inactive grain boundaries, which are the intergranular areas rich in reaction products of varistor components and pores, lead to an improvement in the microstructure, thereby improving the electrical properties of the varistor. The results were evaluated using statistical methods, defining the percentage of active grain boundaries in the varistor. Statistical analysis showed that the best results were obtained for a bismuth oxide varistor doped with antimony oxide, containing nearly 100 % conductive grain boundaries in its body.

Open access

Mohamed Afqir, Amina Tachafine, Didier Fasquelle, Mohamed Elaatmani, Jean-Claude Carru, Abdelouahad Zegzouti and Mohamed Daoud

Abstract

The main subject of the presented research is to investigate the dielectric properties of BaBi1.8Ln0.2Nb2O9 (Ln = Ce, Gd) ceramics prepared by conventional solid state reaction route. The materials were examined using XRD and FT-IR methods. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined. X-ray diffraction confirmed that all these compounds crystallize in an orthorhombic structure. Fourier transform infrared spectroscopy study confirmed the presence of two characteristic vibration bands located at around 617 cm-1 and 818 cm-1 for BaBi2Nb2O9. The experimental results show that the substitution of Bi by Ce or Gd causes a decrease in Curie temperature, dielectric constant and dielectric loss.

Open access

Olga Girvica

Abstract

This paper deals with the problem of optimal resource distribution in optimal way among the units of an aviation company. This task could be solved by using the method of dynamic programming. Using Mathcad 14 programming language, there was created a special program that allows to make corresponding calculations. The solution of the real task for an aviation company is observed in this paper as a numerical sample of limited resource distribution between the units of the company in order to get the maximum profit.

Open access

Tanusree Mondal, Sayantani Das, T. P. Sinha and P. M. Sarun

Abstract

This work aims to study the electrical conduction mechanism in the dielectric material BaZr0.1Ti0.9O3 (BZT) ceramics by applying AC signal in the frequency range of 102 Hz to 106 Hz. The phase purity and microstructure of the sample have been studied by X-ray diffraction refinement and field-emission scanning electron microscope (FE-SEM) analysis. The appearance of resonance peaks in the loss tangent at high temperature is due to inherent dielectric relaxation processes of this oxide. The temperature dependent Cole-Cole plot has been studied in details to determine both the grain and grain boundary contribution to the conductivity. Electrical modulus analysis reveals that the hopping of charge carriers is the most probable conduction mechanism in BZT ceramics. The obtained data of AC conductivity obey the universal double power law and have been discussed in terms of microstructural network characteristics. The behavior of frequency exponent n of AC conductivity as a function of temperature verify the applicability of the correlated barrier hopping (CBH) model. The AC conductivity data are used to estimate the minimum hopping length, density of states at Fermi level, thermal conductivity and apparent activation energy. The value of activation energy confirms that the oxygen vacancies play a vital role in the conduction mechanism.