Browse

You are looking at 1 - 10 of 918 items for :

  • Biotechnology x
Clear All
Open access

Serap Fındık

Abstract

Ultrasonic irradiation is one of the advanced oxidation methods used in wastewater treatment. In this study, ultrasonic treatment of petroleum refinery effluent was examined. An ultrasonic homogenizator with a 20 kHz frequency and an ultrasonic bath with a 42 kHz frequency were used as a source for ultrasound. The effects of parameters such as ZnO amount, ozone saturation time, and type of ultrasound source on the degradation of petroleum refinery effluent were investigated. The degradation of petroleum refinery effluent was measured as a change in initial chemical oxygen demand (COD) and with time. According to the results, degradation increased with the addition of ZnO in an ultrasonic probe. There was also a positive effect of ozone saturation before sonication then applying ultrasound on the degradation for an ultrasonic probe. It was observed that there was no positive effect of ZnO addition and ozone saturation on degradation for an ultrasonic bath.

Open access

Mateusz Jackowski and Anna Trusek

Abstract

Through years beer became one of the best known alcoholic beverages in the world. For some reason e.g. healthy lifestyle, medical reasons, driver’s duties, etc. there is a need for soft drink with similar organoleptic properties as standard beer. There are two major approaches to obtain such product. First is to interfere with biological aspects of beer production technology like changes in mashing regime or to perform fermentation in conditions that promote lower alcohol production or using special (often genetic modified) microorganism. Second approach is to remove alcohol from standard beer. It is mainly possible due to evaporation techniques and membrane ones. All these approaches are presented in the paper.

Open access

Andrzej Noworyta, Anna Trusek and Maciej Wajsprych

Abstract

The efficiency of enzymatic depolymerization in a membrane reactor was investigated. The model analysis was performed on bovine serum albumin hydrolysis reaction led by three different enzymes, for which kinetic equations have different forms. Comparing to a classic reactor, the reaction yield turns out to be distinctly higher for all types of kinetics. The effect arises from increasing (thanks to the proper selectivity of the applied membrane) the concentration of reagents in the reaction volume. The investigations indicated the importance of membrane selectivity election, residence time and at non-competitive inhibition the substrate (biopolymer) concentration in feed stream. Presented analysis is helpful in these parameters choice for enzymatic hydrolysis of different biopolymers.

Open access

Małgorzata Szymiczek and Błażej Chmielnicki

Abstract

The aim of the present study was to investigate the effect of epoxy resin curing agents and aluminium surface modification on the properties of adhesive joints which were subjected to aging under thermal shock conditions. Composites containing reinforced aramid and carbon fibres with aluminium flat profiles (alloy Al 5754) were tested under shear conditions. Epoxy resin (Araldite LY 1564) with amine curing agents (Aradur 3486, Aradur 3487 and Aradur 3405) was used as a matrix. Composites were made using vacuum-assisted contact lamination. The degree of degradation was assessed on the basis of lap shear strength of adhesive joints in accordance with EN ISO 1465:2009. The research showed that epoxy composite samples based on Aradur 3405 (accelerated aliphatic polyamine) and sanded surface of aluminium presented the best lap shear adhesive strength, because this composite has the largest roughness. The hardness of the used adhesive is slightly increased with the cycle number.

Open access

Agnieszka Wróblewska, Mariusz Malko and Marika Walasek

Abstract

This work presents the studies on the epoxidation of limonene to 1,2-epoxylimonene with hydrogen peroxide and over the titanium-silicate Ti-SBA-15 catalyst. The main object of the research was a solvent effect on the epoxidation process. The influence of solvents, such as: methanol, toluene, propan-2-ol (isopropyl alcohol), acetonitrile and ethanol has been studied. Furthermore, the influence of temperature in the range of 0–120°C and the reaction time in the range of 0.25–48 h have been investigated. Gas chromatography and iodometric titration methods were used to establish the products of this process and amount of the unreacted hydrogen peroxide. 1,2-Epoxylimonene, 1,2-epoxylimonene diol, perillyl alcohol, carvone and carveol have been determined as the main products of this process. All these compounds are very valuable raw materials for organic syntheses, medicine or cosmetic and food industry.

Open access

Katarzyna Czyzewska and Anna Trusek

Abstract

The recombinant catalase isolated from a psychrotolerant microorganism belonging to Serratia genus exhibits a high activity in a wide range of pH. Due to a great catalytic potential in operational conditions, it can be used in various industrial applications whereby it acts as a hydrogen peroxide scavenger. To reduce the cost of biocatalyst the enzyme encapsulation into a hydrogel structure was proposed. The obtained results showed a high activity of encapsulated catalase in acidic conditions (pH in range 4.4 – 6.6) and at low temperatures (6–15°C). Moreover, immobilized catalase exhibited a high stability in natural media, especially in milk. Its activity during peroxide decomposition in milk, the possibility of re-using, as well as the fixed bed reactor performance confirmed wide application possibilities. High values of enzyme and substrate concentrations led to the beads burst due to rapid oxygen diffusion from the capsules, thus they are limited.

Open access

Fei Song, Haoyu Xia, Puyou Jia, Meng Zhang, Lihong Hu and Yonghong Zhou

Abstract

In this work, an environmentally friendly type plasticizer was introduced. The synthesis consisted of two steps. In the first step, castor oil (CO) was acrylated and then the acrylated castor oil (ACO) was epoxidized with the presence of formic acid and hydrogen peroxide in the second step. The epoxidized acrylated castor oil (EACO) was characterized by FTIR and 1H-NMR techniques. The EACO was used as a main plasticizer to obtain plasticized PVC materials and compared with DOP. The results showed that EACO improved polyvinyl-chloride (PVC) plasticization performance and reduced Tg from 81.06°C to 1.40°C. Plasticized PVC materials with EACO showed similar mechanical properties and better thermal stability than DOP. EACO had better volatility stabilities, migration and solvent extraction in PVC than DOP. EACO can be used to replace DOP to prepare soft films.

Open access

Zhen-Hui Xin, Ya-Li Meng, Yan-Hua Wu, Jian Wang, Zhi-Ke Feng and Yan-Fei Kang

Abstract

A simple and coumarin-based fluorescence probe has been designed and synthesized with silyl group as recognition group of fluoride ions (F−) in this study. The results showed that the fluorescence intensity of the probe displayed prominent enhancement with addition of F− at 445 nm with incubation of 1 min. There was an excellent linear relationship between fluorescence intensity and fluoride concentration from 0 to 30 μM (0~0.57 ppm), which offered the important condition for the quantitative analysis. In addition, the highly selective response to fluorion, the low detection limit with 28 nM (0.532 ppb), low toxicity and bioimaging afforded an advantage for practical application and detecting fluoride in biological systerms.

Open access

Marek Gryta

Abstract

The membrane distillation performance was studied for production of demineralized water from surface water (river). Hot water from cooling water system of municipal waste incinerator was considered as an energy source for membrane distillation. The integration of membrane installation with such cooling water system allows to re-use up to 18 kW per 1 m2 of the membranes. The studies were performed with the application of polypropylene capillary membranes Accurel PP S6/2. The membrane modules were supplied with the feed heated to a temperature of 310 K and 330 K. The permeate fl ux obtained for these temperatures was 2.8 and 9.7 L/m2 h, and the distillate conductivity was 6 and 4 S/cm, respectively. The water demineralisation process was carried out for 1200 h without module cleaning. The behaviour of the permeate fl ux and distillate conductivity indicate that used membranes maintained their non-wettability over tested period. The performed SEM-EDS examinations confi rmed, that the deposits did not fi ll the pores and were mainly formed on the membrane surface. The scaling intensity was defi nitely smaller for lower temperature (310 K) of the feed. The amorphous deposits containing beside Ca also substantial amounts of the Si were mainly formed under these conditions, whereas at higher feed temperature dominated CaCO3 scaling.

Open access

Marlena Musik, Eugeniusz Milchert and Kornelia Malarczyk-Matusiak

Abstract

The course of epoxidation of sesame oil (SO) with performic acid formed „in situ” by the reaction of 30 wt% hydrogen peroxide and formic acid in the presence of sulfuric acid(VI) as a catalyst was studied. The most advantageous of the technological independent parameters of epoxidation are as follows: temperature 80°C, H2O2/ C=C 3.5:1, HCOOH/C=C 0.8:1, amount of catalyst as H2SO4/(H2O2+HCOOH) 1 wt%, stirring speed at least 700 rpm, reaction time 6 h. The iodine number (IN), epoxy number (EN), a relative conversion to oxirane (RCO) and oxirane oxygen content (EOe) were determined every hour during the reaction. Under optimal conditions the sesame oil conversion amounted to 90.7%, the selectivity of transformation to epoxidized sesame oil was equal to 93.2%, EN = 0.34 mol/100 g, IN = 0.04 mol/100 g oil (10.2 g/100 g oil), a relative conversion to oxirane RCO = 84.6%, and oxirane oxygen content of EOe = 5.5%.