Browse

1 - 10 of 758 items :

  • Control Engineering, Metrology and Testing x
Clear All

Abstract

In biometrics, methods which are able to precisely adapt to the biometric features of users are much sought after. They use various methods of artificial intelligence, in particular methods from the group of soft computing. In this paper, we focus on on-line signature verification. Such signatures are complex objects described not only by the shape but also by the dynamics of the signing process. In standard devices used for signature acquisition (with an LCD touch screen) this dynamics may include pen velocity, but sometimes other types of signals are also available, e.g. pen pressure on the screen surface (e.g. in graphic tablets), the angle between the pen and the screen surface, etc. The precision of the on-line signature dynamics processing has been a motivational springboard for developing methods that use signature partitioning. Partitioning uses a well-known principle of decomposing the problem into smaller ones. In this paper, we propose a new partitioning algorithm that uses capabilities of the algorithms based on populations and fuzzy systems. Evolutionary-fuzzy partitioning eliminates the need to average dynamic waveforms in created partitions because it replaces them. Evolutionary separation of partitions results in a better matching of partitions with reference signatures, eliminates dispro-portions between the number of points describing dynamics in partitions, eliminates the impact of random values, separates partitions related to the signing stage and its dynamics (e.g. high and low velocity of signing, where high and low are imprecise-fuzzy concepts). The operation of the presented algorithm has been tested using the well-known BioSecure DS2 database of real dynamic signatures.

Abstract

Content-based image retrieval methods develop rapidly with a growing scale of image repositories. They are usually based on comparing and indexing some image features. We developed a new algorithm for finding objects in images by traversing their edges. Moreover, we describe the objects by histograms of local features and angles. We use such a description to retrieve similar images fast. We performed extensive experiments on three established image datasets proving the effectiveness of the proposed method.

Abstract

In this paper, we propose a new population-based evolutionary algorithm that automatically configures the used search mechanism during its operation, which consists in choosing for each individual of the population a single evolutionary operator from the pool. The pool of operators comes from various evolutionary algorithms. With this idea, a flexible balance between exploration and exploitation of the problem domain can be achieved. The approach proposed in this paper might offer an inspirational alternative in creating evolutionary algorithms and their modifications. Moreover, different strategies for mutating those parts of individuals that encode the used search operators are also taken into account. The effectiveness of the proposed algorithm has been tested using typical benchmarks used to test evolutionary algorithms.

Abstract

We consider the problem of multi agents cooperating in a partially-observable environment. Agents must learn to coordinate and share relevant information to solve the tasks successfully. This article describes Asynchronous Advantage Actor-Critic with Communication (A3C2), an end-to-end differentiable approach where agents learn policies and communication protocols simultaneously. A3C2 uses a centralized learning, distributed execution paradigm, supports independent agents, dynamic team sizes, partially-observable environments, and noisy communications. We compare and show that A3C2 outperforms other state-of-the-art proposals in multiple environments.

Abstract

Clustering is an attractive technique used in many fields in order to deal with large scale data. Many clustering algorithms have been proposed so far. The most popular algorithms include density-based approaches. These kinds of algorithms can identify clusters of arbitrary shapes in datasets. The most common of them is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The original DBSCAN algorithm has been widely applied in various applications and has many different modifications. However, there is a fundamental issue of the right choice of its two input parameters, i.e the eps radius and the MinPts density threshold. The choice of these parameters is especially difficult when the density variation within clusters is significant. In this paper, a new method that determines the right values of the parameters for different kinds of clusters is proposed. This method uses detection of sharp distance increases generated by a function which computes a distance between each element of a dataset and its k-th nearest neighbor. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.

Abstract

In this paper, we look closely at the issue of contaminated data sets, where apart from legitimate (proper) patterns we encounter erroneous patterns. In a typical scenario, the classification of a contaminated data set is always negatively influenced by garbage patterns (referred to as foreign patterns). Ideally, we would like to remove them from the data set entirely. The paper is devoted to comparison and analysis of three different models capable to perform classification of proper patterns with rejection of foreign patterns. It should be stressed that the studied models are constructed using proper patterns only, and no knowledge about the characteristics of foreign patterns is needed. The methods are illustrated with a case study of handwritten digits recognition, but the proposed approach itself is formulated in a general manner. Therefore, it can be applied to different problems. We have distinguished three structures: global, local, and embedded, all capable to eliminate foreign patterns while performing classification of proper patterns at the same time. A comparison of the proposed models shows that the embedded structure provides the best results but at the cost of a relatively high model complexity. The local architecture provides satisfying results and at the same time is relatively simple.

Abstract

The article presents the modified structure of the two-level digital frequency synthesizer (TLDFS), which combines the properties of classical digital frequency synthesizers (DFS) and Poisson pulse sequence generators (PPSG). The analysis of the statistical characteristics of synthesizer output signal, obtained in computer modelling with the use of appropriate software, has been carried out, which allowed determining the effective range of values of its control codes. The proposed generators can be effectively used to simulate various natural and technical processes, in particular, to simulate the output signals of dosimetric detectors during the design, adjustment and testing of dosimetric devices.

Abstract

Large-scale image repositories are challenging to perform queries based on the content of the images. The paper proposes a novel, nested-dictionary data structure for indexing image local features. The method transforms image local feature vectors into two-level hashes and builds an index of the content of the images in the database. The algorithm can be used in database management systems. We implemented it with an example image descriptor and deployed in a relational database. We performed the experiments on two image large benchmark datasets.

Abstract

This paper is focused on the nonlinear state estimation problem with finite-step correlated noises and packet loss. Firstly, by using the projection theorem repeatedly, the mean and covariance of process noise and measurement noise in the condition of measurements before the current epoch are calculated. Then, based on the Gaussian approximation recursive filter (GASF) and the prediction compensation mechanism, one-step predictor and filter with packet dropouts are derived, respectively. Based on these, a nonlinear Gaussian recursive filter is proposed. Subsequently, the numerical implementation is derived based on the cubature Kalman filter (CKF), which is suitable for general nonlinear system and with higher accuracy compared to the algorithm expanded from linear system to nonlinear system through Taylor series expansion. Finally, the strong nonlinearity model is used to show the superiority of the proposed algorithm.

Abstract

Lungs are used as an attractive possibility for administration of different therapeutic substances for a long time. An innovative method of such administration widely studied nowadays is the application of aerosolized magnetic particles as the carriers to the lungs in the external non-homogeneous magnetic field. For these reasons we have studied dynamics of such a system on a level of particle trajectory in air in the presence of magnetic force as a driving force exerted on micrometric magnetic particle. On two typical examples of magnetically driven systems—motion of magnetic particle in a gradient magnetic field and cyclotron-like motion of a charged particle in homogeneous magnetic field in microscale, where the external accelerating forces are very large and the relevant time scale is of the order from fraction of milliseconds to seconds, we have examined the importance of these forces. As has been shown, for particles with high initial acceleration, not only the commonly used Stokes force but also the Basset history force should be used for correct description of the motion.