Browse

You are looking at 1 - 10 of 314 items for :

  • Tools and Methods x
Clear All
Open access

Abdelhak Elhannani, Kaddour Refassi, Abbes Elmeiche and Mohamed Bouamama

Abstract

This investigation deals with the vibration analysis of a rotating tapered shaft in Functionally Graded Material (FGM). The dynamic system is modeled using the Timoshenko beam theory (FSDBT) with consideration of gyroscopic effect and rotary inertia. The equations of motion are expressed by the hierarchical finite element method based on bi-articulated boundary conditions. The material properties are continuously varied in the thickness direction of a hollow shaft according to the exponential law function (E-FGM). The presented model is validated by comparing the numerical results found with the available literature. Various analyses are carried out to determine the influence of taper angle and material distribution of the two extreme materials on the dynamic behavior of FGM conical rotors system.

Open access

Milon Selvam Dennison, Sivaram N M, Debabrata Barik and Senthil Ponnusamy

Abstract

The objective of this study is to analyse the effect of tool-work interface temperature observed during the turning of AISI 4340 cylindrical steel components in three machining conditions, namely flooded, near-dry and dry conditions with three separate CNMG-PEF 800 diamond finish Titanium Nitride (TiN) coated carbide cutting tool. The machining parameters considered in this study are cutting velocity, feed rate and depth of cut. The experiments were planned based on full factorial design (33) and executed in an All Geared Conventional Lathe. The tool-work interface temperature was observed using a K-type tool-work thermocouple, while the machining of steel, and subsequently, a mathematical model was developed for the tool-work interface temperature values through regression analysis. The significance of the selected machining parameters and their levels on tool-work interface temperature was found using analysis of variance (ANOVA) and F-test. The results revealed that machining under near-dry condition exhibited lesser temperature at the tool-work interface, which is the sign of producing better quality products in equivalence with the machining under flooded condition.

Open access

S. Sakthivelu, M. Meignanamoorthy, M. Ravichandran and P. P. Sethusundaram

Abstract

This research made an attempt to synthesize aluminum metal matrix composites through stir casting technique. The matrix material chosen in this study was AA7050 and the reinforcement material was ZrSiO4. The composites AA7050, AA7050-10%ZrSiO4, and AA7050-15%ZrSiO4 were used. The wear behavior of the aluminum matrix composites was investigated by using pin-on-disc tribometer. The advanced material has substantial development in tribological behavior when the reinforcement percentage is increased. From the experimental results, it was confirmed that sliding distance of 1200 m, applied load of 3 N and sliding speed of 2 m/s result in minimum wear loss and coefficient of friction, while adding 10%ZrSiO4 to the AA7050.

Open access

Praveen Ailawalia and Amit Singla

Abstract

The present investigation deals with the twodimensional deformation because of laser pulse heating in a thermoelastic microelongated layer with a thickness of 2d, which is immersed in an infinite nonviscous fluid. Normal mode analysis technique is applied to obtain the analytic expressions for displacement component, force stress, temperature distribution, and microelongation. The effect of elongation and laser pulse rise time on the derived components have been depicted graphically.

Open access

N. Manopradha, S. Rama, S. Gowri, K. Kirubavathi and K. Selvaraju

Abstract

This work illustrates the significance of kinetic parameters of nucleation and thermal decomposition for Pyridine-2-carboxylic acid crystals. In the interest of maximizing the growth condition for the production of single crystals, nucleation parameters such as interfacial energy (σ), volume free energy (ΔGv), critical energy barrier for nucleation (ΔG *), radius of the critical nucleus (r*) and nucleation rate (J) were determined from the classical nucleation theory of solubility-enthalpy relation. The optimized geometry of the compound was computed from the DFT-B3LYP gradient calculations employing 6-31G(d,p) basis set and its vibrational frequencies were evaluated. Based on the vibrational analysis, the thermodynamic parameters were obtained and the correlative equations between these thermodynamic properties and variation in temperatures were also reported.

Open access

Dmitry Popolov, Sergey Shved, Igor Zaselskiy and Igor Pelykh

Abstract

The article presents the movement kinematics of the modular bar element of a dynamically active polymer sieve of a vibrating screen. On the basis of analytical methods, the mathematical model was obtained, which makes it possible to determine the law and trajectory of the modular bar element movement depending on its geometric characteristics, physico-mechanical properties of the polymer material, the regime and technological parameters of the vibrating screen. The results of this research show that in the working frequency range of the vibrating screen grate, modular bar element of the dynamically active sieve moves along the trajectories, the envelope of which is represented by Cassini’s ovals, which along with the generation of the amplitude component in the horizontal and vertical directions allows one to obtain the selfcleaning effect of the sowing surface.

Open access

Amit K. Thawait, Lakshman Sondhi, Shubhashis Sanyal and Shubhankar Bhowmick

Abstract

The present study reports the linear elastic analysis of variable thickness functionally graded rotating disks. Disk material is graded radially by varying the volume fraction ratios of the constituent components. Three types of distribution laws, namely power law, exponential law and Mori–Tanaka scheme are considered on a concave thickness profile rotating disk, and the resulting deformation and stresses are evaluated for clamped-free boundary condition. The investigation is carried out using element based grading of material properties on the discretized elements. The effect of grading on deformation and stresses is investigated for each type of material distribution law. Further, a comparison is made between different types of distributions. The results obtained show that in a rotating disk, the deformation and stress fields can be controlled by the distribution law and grading parameter n of the volume fraction ratio.

Open access

Ebrahim Nazarimofrad and Mehdi Barang

Abstract

The objective of this paper is to assess the inplane shear buckling of a steel foam sandwich panel that relies on elastic Pasternak foundation. The panel is a combination of solid steel face sheets and foamed steel cores. Foamed steel, that is steel with internal voids, provides enhanced bending rigidity and energy dissipation, and also, the potential to reduce local buckling. The Classic plate theory is employed where their governing equations are solved by the Rayleigh–Ritz method. Uniformly distributed in-plane shear loads are applied to the two opposite edges of the panel and all the four edges of the panel are simply supported. Finally, the effects of the panel parameters, such as the existence of a Pasternak foundation, aspect ratios, and central fraction of the steel foam core, are presented. The results showed that the optimum central fraction of the steel foam core would be 65%, so that the maximum critical shear buckling load has taken place.

Open access

Hugo Miguel Silva and Jerzy Wojewoda

Abstract

In this work, novel types of internally reinforced hollow-box beams were subjected to bending loading and studied using the finite element analysis software ANSYS. A parameterization of 3 geometric variables was performed, and deflection and effective deflection results were collected from 2 points at the model. The sensitivity analysis results are then discussed, with the aim of concluding if the selected design variables are adequate for optimization purposes.

Open access

Rajneesh Kumar and Richa Vohra

Abstract

The present investigation is concerned with vibration phenomenon of a homogeneous, isotropic thermoelastic microbeam with double porosity (TDP) structure induced by pulsed laser heating, in the context of Lord– Shulman theory of thermoelasticity with one relaxation time. Laplace transform technique has been applied to obtain the expressions for lateral deflection, axial stress, axial displacement, volume fraction field, and temperature distribution. The resulting quantities are recovered in the physical domain by a numerical inversion technique. Variations of axial displacement, axial stress, lateral deflection, volume fraction field, and temperature distribution with axial distance are depicted graphically to show the effect of porosity and laser intensity parameter. Some particular cases are also deduced.