Browse

1 - 10 of 397 items :

  • Introductions and Overviews x
  • Engineering, other x
  • Engineering x
Clear All
Assessment of Traffic Noise Pollution Due to Urban Residential Road Transport

Abstract

The problem of combating urban noise is closely linked to the rational transformation of the urban environment, which must go through the elimination or reduction of the number of sources of noise, the localization of the noise emission zone, reducing the level of sound sources and protection against noise for the residential areas. Theoretical and experimental studies of acoustic loading on the territory along the highway for the typical section of the urban territory have been conducted. To estimate the complex noise impact from all sources and from individual sources, as well as to predict the total noise exposure for this site, a noise map was constructed using software. As a measure to combat traffic noise in the territory along the highway, the location of the noise protection screen was justified, taking into account the loss of part of the national income as a result of the continuous impact of noise on a person.The results of the research allow to assess the degree of technogenic impact of noise pollution during the operation of the highway, which allows regulating, by administrative and legislative methods, the nature of the impact on natural objects and human health of certain types of activities, as well as reasonably proposing measures that ensure environmental safety when organizing urban streets traffic.

Open access
Bicycle Level of Service Model for the Cycloruta, Bogota, Colombia

Abstract

Segment videos were produced at different peaks to reflect different sampling criteria like land use characteristics, trails, Ciclocarrils and Ciclovia. Each segment was filmed for 20–40 seconds during bicycle rides at a speed of about 5km/h with a camera strapped, at an angle of 45 degrees, on the head. Curb lane variables such as bicycle pathway widths, curb lane motorised volume (veh/h) and vehicle speed (km/h), bicycle volume on segment, and median width were recorded in addition to secondary data. About 1,360 ratings were acquired from study participants and used in the estimation process. Ordered probability models were used to estimate random parameters of cyclists LOS perception to account for unobserved heterogeneity for all respondents. The deviance (1.085) and Pearson Chi-Square (2.309) with 1,635 degree of freedom at 0.05 level of significance shows that our model provides a better fit of the data. The study observed that BLOS was strongly influenced by side path separation, vehicle speed, motorised traffic volume and conflicts with pedestrians. However, many other factors were found to have high probabilities to influence level of service with unit change. They include bicycle lane width, wide outside lane, pavement conditions, trees and benches, daylight, gender and experience of cyclist. The impact of the variety of observed factors affecting bicyclists reveal the nature and character of urban transportation in Bogota which suggests a range of important trade-offs in further planning and management of the Cicloruta bicycle paths.

Open access
Loessoid Soils Improvement – Laboratory Tests and Road Engineering Applications

Abstract

Moisture-sensitive or collapsible soils are materials with high porosity that under the loads transmitted by the superstructure or even under its own weight present additional settlements once the soil is saturated. This category includes loess deposits and other high silt content soils with uneven porosity. A method often used for foundation on these soils is the realization of local loessoid material compacted columns. This paper presents, on one hand, the experimental laboratory programs aiming to achieve some optimal mixtures of local material (loess) and different other materials (sand, bentonite, cement) in order to improve the values of the mechanical parameters of the soil and so, to limit the settlements. On the other hand, it presents a lot of settlement calculations for different case scenarios.

Open access
Reducing the Seismic Vulnerability for RC Buildings by Using Steel Bracing Elements

Abstract

This article aims to highlight, through a comparative study, the efficiency of steel bracing systems used to reduce seismic vulnerabilities in existing buildings with reinforced concrete structures (reinforced concrete frames and reinforced concrete dual structures, general building structures including those used in transport infrastructure). In order to simplify the calculations, the analysis was reduced to the study of the behavior of resistance lines corresponding to four-, nine- and fifteen-level buildings with the same plane distribution. In order to obtain features similar to those of existing building elements, structures were initially loaded with seismic forces corresponding to code P13-63. The next step was to apply to previously dimensioned structures the seismic loads according to P100-3: 2008 in relation to P100-1: 2013, thus obtaining the deficiencies of the existing structures against the requirements of these norms. Correction of these strength and stiffness deficiencies was attempted by introducing X-shaped centric brace systems. The bracing systems used as consolidation methods are of three types: direct bracings stuck in the reinforced concrete frames and bracings of the indirect type, made of internal and external bracing steel frames. Structural calculations were made in the linear elastic field using the ETABS program.

Open access
Study of the Influence of Fibres Type and Dosage on Properties of Concrete for Airport Pavements

Abstract

The paper follows the potential practice of fiber reinforced concrete (FRC) as a solution for airport`s runway pavements, in order to increase the bearing strength, resulting in decreasing the height of the concrete layer that is currently used.

Experimentally, the study focuses on the properties of fiber reinforced Portland cement concrete using 3 different percentages (0.5%, 1% and 1.5% of the concrete volume) and 4 different types of fiber (for 1% percentage – hooked steel fiber 50 mm length, hooked steel fiber 30 mm length, crimped steel fiber 30 mm length and polypropylene fiber 50 mm lenght), using as reference a plain concrete with 5 MPa flexural strength.

More exactly, the study presents the change in compressive and flexural strength, shrinkage, thermal expansion factor, elastic modulus and Poisson`s ratio over fiber type and dosage.

For the highest performance concrete (7 MPa flexural strength), it has been made a study using two methods for rigid airport pavements design (general method and optimized method), and one method for evaluation of bearing strength (ACN – PCN method), which is compared to a plain 5 MPa concrete. Furthermore, the decrease in the slab`s thickness proportionally to the growth of the flexural strength is emphasized by evaluating the slab`s height for a high performance 9 MPa concrete using both design methods.

Open access
The Use of Tuned Mass Dampers for Reducing Structural Vulnerabilities During the Side Movements of Buildings with Reinforced Concrete Frames

Abstract

The present article aims to point out, with the help of a comparative research, the efficiency of tuned mass dampers, modern variants of consolidation ensuring seismic structural safety, used for buildings with a reinforced concrete structure, designed and produced according to the new codes. Case studies were based on structural computations in the linear elastic field using the ETABS program.

Open access
Characteristics of Water Consumption in Cho-Cianów, Parchów and Pogorzeliska, Lower Silesia Province

Abstract

Water consumption is an amount characteristic to individual water sup-ply systems. It is described by values of the unitary consumption of water and unevenness coefficients. An analysis of consumption for the years 2009-2016 in two systems which are diverse in terms of the number of supplied recipients as well as the intended water use is presented. The values of unitary consumption indices as well as hourly and daily irregularity of consumption were calculated, and factors influencing the irregularity of consumption in different time frames indicated. Conclusions regarding the amount and irregularity of consumption were drawn and compared with guidelines and other analysed systems.

Open access
Effect of Cockele Shells on Mortars Performance in Extreme Conditions

Abstract

This paper studies the use of cockle shell as supplementary cementitious materials SCMs as substitute for cement. The cockle shells generally have a high CaO content which can alter the behavior and the properties of mortars and concrete. Cockle shell is used with weight ratios of 5, 10, 15 and 20% to formulate a mortar with cockle shell and a control mortar CM with 0% of cockle shell. The properties in the fresh state, the mechanical strength and the weight loss test as well as the depth of penetration of each mixture were carried out through the conducted experiments. Consistency and density of fresh mortars were determined, the results obtained showed that cockle shell have a significant influence on the properties of mortars in the fresh state.

The different results of hardened mortars show that the introduction of cockle shell tends to accelerate the development kinetics of strength at the young age but its ratio cannot be above of 5%. Mortar with 10% presented the lower depth penetration, the loss weight increased proportionally with the increasing of cockle shell amount.

Open access
Influence of the Static Loading of a Raft Unconnected to a Pile on the Pile Displacements Tested in Field Conditions

Abstract

We present the results of a static pile-raft interaction test in field conditions. The pile and the raft were unconnected. The static loading on the raft affected the displacements of the pile due to the skin friction. The displacements were also observed for another pile, placed at the 3-metre distance.

Open access
Investigation of Load Capacity of Steel Concrete Composite Columns Src Reinforced by IPE

Abstract

In this study, a column with section IPE and different lengths, completely embedded in concrete, is modelled by finite element software ABAQUS. Columns under different bi-axial loading were used and graphs of axial force-axial deformation, interaction axial force, and bending moment and column curve were mapped. The results show that the load capacity of the column, with increasing length and also increasing eccentricity of the axial load, will be reduced. With increasing length, the effect of an increased eccentricity of the reduced load capacity was increased. Equations for the design of the column are also presented. The results of the presented equations were compared with the values obtained from finite element and building national institute 10th topic.

Open access