Browse

1 - 10 of 1,187 items :

  • Biotechnology x
Clear All

Abstract

Acrylamide (AA) is a chemical substance with a potentially carcinogenic effect. Its presence in food or animal food arises from its thermal processing. The experiment was conducted to evaluate the effect of AA exposure (3.0 mg/ kg. b.w. /day) of pregnant dams during the second half of the pregnancy on bone development in offspring. As an model animal, guinea pig was used. While term body weight of newborns was not influenced by maternal AA treatment, shorter bones with reduced bone diaphysis cross-sectional area were observed in experimental group. Numerous negative, offspring sex-dependent effects of maternal AA exposure were observed in femoral epiphysis and metaphysis as well as the articular and growth plate cartilages. This effects resulted from the AA-inducted alterations in bone metabolism, as indicated by the changes in the expression of numerous proteins involved in bone development: receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and cartilage oligomeric matrix protein (COMP), all of which expression was measured as well as distribution of immature collagen fibres was determined. Based on the results, it can be concluded that the exposure of pregnant dams to AA negatively affected the structure compact bone in bone diaphysis, microarchitecture of trabecular bone in metaphysis and epiphysis as well as the structure of the articular and growth plate cartilages in their offspring. The AA-induced bone impairment increased osteoclast differentiation, as observed through the change in the RANKL/OPG ratio, which in turn inhibited osteoblast function by decreasing the expression of other proteins. The data of the present study suggests that maternal AA exposure can result in insufficient bone gain and even bone loss after the birth.

Abstract

In this study, the basal diet was supplemented with ethanolic extract of purslane (Portulaca oleracea L.) and the possible effects on growth performance, anti-oxidative, and immune activities of grass carp were evaluated. Fish with initial weight 1.23 ± 0.11g were randomly divided into four groups (triplicates) and fed purslane extract at 0% (T0), 0.5% (T1), 1% (T2), and 1.5% (T3) for 56 days. At the end of the feeding trial, the results showed that growth parameters were enhanced in T1 groups compared to the control group (P<0.05). Lipase activity in T1 and T2 groups increased, whereas no significant changes were noticed in cases of amylase and protease activities (P>0.05). Catalase and superoxide dismutase activities were enhanced in all groups fed the supplemented diets in comparison with the control group (P<0.05). However, no significant alteration was noticed in the case of glutathione peroxidase activity following the administration of purslane extract (P>0.05). A significant increase in total immunoglobulin level was noted in the T1 group, but lysozyme activity was higher in T1 and T2 groups compared to the control group (P<0.05). In conclusion, supplementation of grass carp diet with the purslane ethanolic extract, especially at 0.5%, can improve growth performance, lipase activity, the antioxidant enzyme activities as well as the immune response of grass carp fingerlings.

Abstract

The present study aimed to determine the effect of the use of Camelina sativa oil as a dietary ingredient for laying hens on their growth performance, fatty acid profile of yolk lipids, and egg quality parameters. In the experiment, 72 Hy-Line laying hens of age 26 weeks were randomly assigned to three groups with four treatments. Control group (I) was fed the diet containing 4% rapeseed oil (RO group). Experimental groups were fed diets containing 4% camelina oil (CSO group) and 10% camelina cake (group CSC). Feed consumption was measured for each group. The number of laid eggs and their weight were recorded every day. Eggs for the assessment of quality parameters were collected in the last 3 days of the experiment. Egg quality, chemical composition of yolk, and fatty acid profile were determined. Organoleptic evaluation was performed on boiled eggs. The inclusion of C. sativa oil or camelina cake in the laying hen diet did not affect egg weight, albumen quality, or taste and flavor. The experimental groups also showed a tendency toward an increase in the proportion of yolk in the egg (%). Addition of 4% camelina oil or 10% camelina cake to the diet of laying hens reduced monounsaturated fatty acid level in yolk lipids and significantly increased n-3 PUFA content, in particular ALA, EPA, and DHA, compared to the control group.

Abstract

The present study was carried out to evaluate the hematology, serum biochemistry, immune responses and oxidative damage of growing beagles fed a diet supplemented with housefly (Musca domestica) maggot meal (MM). Weaning beagles (initial body weight 2.69 ± 0.17 kg) were fed a control diet (0% MM) or experimental diet (5% MM) for 42 days. The results indicated that the diet supplemented with 5% MM had no significant effects on the hematology and serum biochemistry of growing beagles (P>0.05). Meanwhile, neither the serum concentrations of lysozyme and C-reactive protein nor the serum antibody responses to canine distemper virus and canine parvovirus were influenced by dietary MM supplementation (P >0.05). However, dogs in the experimental group had lower serum levels of malondialdehyde and protein carbonyl than those in the control group (P<0.05). These findings demonstrated that MM could be used as an alternative protein source in growing beagles without any adverse effects on hematology, serum biochemistry and immune responses. Furthermore, dietary MM could alleviate oxidative damage in growing beagles.

Abstract

Lipids (fats and oils) are concentrated source of energy in poultry diets that improves palatability, feed consistency, provides essential fatty acids and increases the absorption of fat-soluble vitamins. Fresh oil is an expensive energy source and its exposure to air, heat, metallic catalyst during storage and processing may lead to its oxidative deterioration. This review highlights the response of modern poultry to dietary oxidized oil on growth performance, nutrients digestibility, gut health, carcass characteristics, meat quality, blood chemistry and tissue oxidative status. Literature shows that in moderately (peroxide value (PV): 20 to 50 meq kg−1) and highly (PV: 50 to 100 meq kg−1 or above) oxidized oils, lipid peroxidation causes rancid odours and flavours that negatively affect feed palatability, reduces intestinal villus height that decreases the surface area available for nutrients absorption. The oxidation products also damage fat soluble vitamins (A, D, E and K) in blood resulting in an oxidative stress. The use of oxidized oil in poultry diets has no significant effect on dressing percentage, pH and meat colour, whereas carcass weight decreases and drip loss of meat increases. Overall, there is a contradictory data regarding the influence of oxidized oil in poultry feed depending on the PV and inclusion levels. The reviewed literature shows that the use of mildly oxidized (PV < 20 meq kg−1) oil in poultry feed with 4 to 5% inclusion level decreases the feed cost and ultimately cost of poultry production without compromising their growth performance. It can, therefore, partially replace fresh oil as an efficient, cost effective and sustainable energy source in poultry diets.

Abstract

For several years in Europe, there has been a growing interest in the use of native sources of protein (e.g. lupine seeds) in poultry nutrition. The current study aimed to investigate the effectiveness of a microbial phytase in broiler diets with the addition of different levels of white lupin seeds. A total of 480 one-day-old male broiler chickens (Ross 308) were randomly divided into six dietary treatments (10 replications/8 birds per group). The basal diet contained SBM as the main protein source and experimental treatments were prepared with white lupin meal (WLM) at 3 levels (0, 10, and 20 %) and with or without phytase inclusion. The experiment was divided into two feeding periods: from 1 to 14 day (starter) and from 15 to 35 day (grower). Diets with phytase addition were deficient in Ca, and nonphytate P. All diets were fed in mash form and offered ad libitum. On day 35th excreta were collected and on day 36th, ten chickens from each group were euthanized and blood, tibia, and digesta samples were collected for further analysis. The 20 % addition of WLM negatively increased the content of phytic-P. The results showed that feed conversion ratio (FCR) and body weight gain (BWG) were not affected by phytase inclusion but by the WLM level alone. In addition, birds fed the diet with 20% WLM were characterized to have the lowest BWG and the highest FCR of all groups. There were no significant differences in feed intake (FI) among chickens fed control and experimental treatments. Regardless of the white lupin level addition, phytase addition improved (P<0.001) nitrogen-corrected apparent metabolizable energy (AMEN). In conclusion, the addition of phytase positively influenced the performance and availability of minerals (Ca and P) regardless of the level of WLM used. However, with regard to the use of WLM in poultry nutrition, it can be assumed that 10 % addition is safe and does not affect performance.

Abstract

Four diets were prepared to include a mixture of medium-chain fatty acids and taurine as a digestive/metabolic enhancer (DME, AQUAGEST®) at 0, 1, 2, and 3 g DME/kg diet and fed for common carp (initial weight, 4.55±0.03 g) for 70 days. Dietary DME significantly increased the final weight, weight gain, specific growth rate, feed intake, and protein efficiency and decreased feed conversion ratio in a dose-dependent manner (P<0.05). The body lipid composition was significantly improved by feeding DME at 2 g/kg diet (P=0.0141). The intestine villus length and the number of goblet cells were significantly increased in fish fed 2 g DME/kg diet (P<0.05). The intestinal villi displayed increased length, branching, and density by supplementing DME to common carp diets. Fish fed DME at 2 g/kg diet displayed markedly decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P =0.025 and P =0.043) and increased total protein and globulin (P =0.002 and P =0.003). Additionally, fish fed 2 and 3 g DME/kg levels displayed significantly increased albumin levels (P =0.006). Lysozyme and phagocytic activities were increased by feeding DME at 2 g/kg diet, while the phagocytic index increased by 2 and 3 g/kg diet (P<0.05). The optimal supplementation level of DME is 1.63 to 2.05 g/kg for common carp based on the polynomial regression analysis. In conclusion, common carp fed diets with a mixture of medium-chain fatty acids and taurine displayed improved growth, digestion activity, and immune response.

Abstract

The aim of this study was to determine the concentrations and emissions of greenhouse and odorous gases in different types of dairy cattle housing systems with the use of Fourier-transform infrared (FTIR) spectroscopy. The study was performed in autumn and winter in four types of dairy cattle barns with different process and technical systems (free-stall, deep litter – FS-DL; free-stall, sub-floor manure storage – FS-SFM; free-stall, litter in stalls – FS-LS; tie-stall, litter in stalls – TS-LS) in northern Poland. Analyses of gaseous mixtures in barn air were conducted by infrared spectrometry with the multi-component Gasmet DX4030 analyzer. A total of 200 measurement spectra were acquired and subjected to qualitative and quantitative analyses with the Calcmet Professional program with a library of reference spectra for 200 chemical compounds. The results of the study indicate that housing systems and the technological solutions applied in barns exert a considerable influence on the production of greenhouse and odorous gases. Free-stall housing with slatted floors and sub-floor manure storage appears to be the optimal solution for reducing the animals’ exposure to the presence of the analyzed chemical compounds in air, improving animal welfare and minimizing GHG emissions to the environment (considering the optimal ventilation rate). It should be noted that the concentrations of other potentially harmful compounds, for which the maximum safe levels have been specified, were also relatively low in the remaining systems, which points to the observance of high sanitary standards and the use of efficient ventilation systems in the evaluated barns.

Abstract

The present study was aimed to evaluate the effects of different levels of salinity on water quality, growth performance, survival rate and body composition of Pacific white shrimp in a heterotrophic/biofloc technology (BFT). Shrimp post-larvae with an average weight of 74.46 mg were cultured in 300 L fiberglass tanks containing 130 L water at a density of 1 post-larva/L. Three treatments including different levels of salinity of 8, 21 and 32 ppt with three replicates were considered. The highest levels of body weight, growth rate, specific growth rate, increase in body length and survival rate were observed at high salinity level (32 ppt). The highest feed conversion ratio (FCR) and the lowest level of feed efficiency were obtained in shrimps cultured at lowest salinity level (P<0.05). Biochemical analysis of shrimp body composition showed an increase in protein, lipid and ash content as the salinity elevated (P<0.05). The zero-water exchange system used in this study had no significant effects on water quality parameters. The results of the present study concluded that high salinity level (32 ppt) improves the growth and survival of the biofloc supplemented Pacific white shrimp in a BFT system.

Abstract

Common carp (Cyprinus carpio) is the most farmed freshwater fish worldwide. In recent years, use of natural products in fish diets has become popular in aquaculture, to improve fish health and growth performance. The present study investigated the effects of essential oil from the leaves of Monterey cypress (Cupressus macrocarpa; CMEO) on growth performance and blood parameters in common carp fingerlings. Identification of 96.1% of the CMEO total volatile components was achieved, with the highest contents for terpinen-4-ol and α-pinene, at 22.9% and 47.7%, respectively. After 60 days of feeding of the fingerlings with supplemented diets without CMEO (CMEO 0%) and with CMEO at 0.5%, 0.75% and 1%, the best growth performance was seen for those fish fed with the CMEO 0.5% diet. No significant differences were seen for the haematological parameters and blood cell indices versus CMEO 0%. Serum glucose, triglycerides, cholesterol and glutamic pyruvic transaminase were significantly reduced in the fingerlings fed with the CMEO 0.5% diet versus CMEO 0%. Thus, CMEO oil as a 0.5% dietary supplement can be used to improve the growth performance and health status of the common carp without any adverse effects seen.