Browse

1 - 10 of 1,751 items :

  • Life Sciences x
Clear All

Abstract

This work is a review of current trends in the stray flux signal processing techniques applied to the diagnosis of electrical machines. Initially, a review of the most commonly used standard methods is performed in the diagnosis of failures in induction machines and using stray flux; and then specifically it is treated and performed the algorithms based on statistical analysis using cumulants and polyspectra. In addition, the theoretical foundations of the analyzed algorithms and examples applications are shown from the practical point of view where the benefits that processing can have using HOSA and its relationship with stray flux signal analysis, are illustrated.

Abstract

The development of biosensors to identify molecular markers or specific genes is fundamental for the implementation of new techniques that allow the detection of specific Deoxyribonucleic acid (DNA) sequences in a fast, economic and simple way. Different detection techniques have been proposed in the development of biosensors. Electrical Bioimpedance Spectroscopy (EBiS) has been used for diagnosis and monitoring of human pathologies, and is recognized as a safe, fast, reusable, easy and inexpensive technique. This study proves the development of a complementary DNA (cDNA) biosensor based on measurements of EBiS and DNA's immobilization with no chemical modifications. The evaluation of its potential utility in the detection of the gene expression of three inflammation characteristic biomarkers (NLRP3, IL-1β and Caspase 1) is presented. The obtained results demonstrate that EBiS can be used to identify different gene expression patterns, measurements that were validated by Quantitative Polymerase Chain Reaction (qPCR). These results indicate the technical feasibility for a biosensor of specific genes through bioimpedance measurements on the immobilization of cDNA.

Abstract

Impedance cardiography (ICG) is a non-invasive method to evaluate several cardiodynamic parameters by measuring the cardiac-synchronous changes in the dynamic transthoracic electrical impedance. ICG allows us to identify and quantify conductivity changes inside the thorax by measuring the impedance on the thorax during a cardiac cycle. Pathologic changes in the aorta, like aortic dissection, will alter the aortic shape as well as the blood flow and consequently, the impedance cardiogram. This fact distorts the evaluated cardiodynamic parameters, but it could lead to the possibility to identify aortic pathology. A 3D numerical simulation model is used to compute the impedance changes on the thorax surface in case of the type B aortic dissection. A sensitivity analysis is applied using this simulation model to investigate the suitability of different electrode configurations considering several patient-specific cases. Results show that the remarkable pathological changes in the aorta caused by aortic dissection alters the impedance cardiogram significantly.

Abstract

In this work, we report on the construction, training and functional assessment of an electronic nose (called ‘E-Nose’) that is capable of monitoring the microbial contamination onboard space ships under microgravity conditions. To this end, a commercial electronic nose was modified to allow for the sampling of microbial volatile organic compounds (MVOCs) emitted from relevant bacterial and fungi species. Training of the modified ‘E-Nose’ was performed by establishing an MVOC database consisting of two Gram-positive bacteria strains (Bacillus subtilis and Staphylococcus warneri) and two fungi strains (Aspergillus versicolor and Penicillium expansum). All these strains are known to exist onboard the International Space Station (ISS) and to form important parts of its microbial contamination. All cultures were grown on four kinds of structural materials also in use onboard the ISS. The MVOCs emitted during the different growth phases of these cultures were monitored with an array of ten different metal oxide gas sensors inside the ‘E-Nose’. Principal component analysis of the array data revealed that B. subtilis and S. warneri form separate clusters in an optimized score plot, while the two fungi strains of A. versicolor and P. expansum form a large common cluster, well discriminated against to the bacteria clusters.

Abstract

A modified analytical solution of the quadratic non-linear oscillator has been obtained based on an extended iteration method. In this study, truncated Fourier terms have been used in each step of iterations. The frequencies obtained by this technique show good agreement with the exact frequency. The percentage of error between the exact frequency and our third approximate frequency is as low as 0.001%. There is no algebraic complexity in our calculation, which is why this technique is very easy. The results have been compared with the exact and other existing results, which are both convergent and consistent.

Abstract

Cell culture on orbit is complicated by numerous operational constraints, including g-loads on the ascent, vibrations, transit time to International Space Station, and delays in experiment initiation. Cryopreserving cells before launch would negate these factors. However, defrosting these cells is problematic, since the traditional method of employing a water bath is not possible. We here describe a unique apparatus designed to accomplish this in a microgravitational environment. This apparatus resulted in rapid defrost of cryopreserved cell cultures and allowed successful tissue culture operations on the station for periods of up to 21 days.

Abstract

In this study we define the notion of (k,m)-type slant helices in Minkowski 4-space and express some characterizations for partially and pseudo null curves in 𝔼14 .

Abstract

In this manuscript, the application of the extended sinh-Gordon equation expansion method to the Davey-Stewartson equation and the (2+1)-dimensional nonlinear complex coupled Maccari system is presented. The Davey-Stewartson equation arises as a result of multiple-scale analysis of modulated nonlinear surface gravity waves propagating over a horizontal seabed and the (2+1)-dimensional nonlinear complex coupled Maccari equation describes the motion of the isolated waves, localized in a small part of space, in many fields such as hydrodynamic, plasma physics, nonlinear optics. We successfully construct some soliton, singular soliton and singular periodic wave solutions to these two nonlinear complex models. The 2D, 3D and contour graphs to some of the obtained solutions are presented.

Abstract

NASA is planning to launch robotic landers to the Moon as part of the Artemis lunar program. We have proposed sending a greenhouse housed in a 1U CubeSat as part of one of these robotic missions. A major issue with these small landers is the limited power resources that do not allow for a narrow temperature range that we had on previous spaceflight missions with plants. Thus, the goal of this project was to extend this temperature range, allowing for greater flexibility in terms of hardware development for growing plants on the Moon. Our working hypothesis was that a mixture of ecotypes of Arabidopsis thaliana from colder and warmer climates would allow us to have successful growth of seedlings. However, our results did not support this hypothesis as a single genotype, Columbia (Col-0), had the best seed germination, growth, and development at the widest temperature range (11–25 °C). Based on results to date, we plan on using the Columbia ecotype, which will allow engineers greater flexibility in designing a thermal system. We plan to establish the parameters of growing plants in the lunar environment, and this goal is important for using plants in a bioregenerative life support system needed for human exploration on the Moon.

OPEN ACCESS