Browse

1 - 10 of 262 items :

  • General Mathematics x
  • Life Sciences, other x
Clear All

Abstract

Topological indices play a very important role in the mathematical chemistry. The topological indices are numerical parameters of a graph. The degree sequence is obtained by considering the set of vertex degree of a graph. Graph operators are the ones which are used to obtain another broader graphs. This paper attempts to find degree sequence of vertex–F join operation of graphs for some standard graphs.

Abstract

Three main tools to study graphs mathematically are to make use of the vertex degrees, distances and matrices. The classical graph energy was defined by means of the adjacency matrix in 1978 by Gutman and has a large number of applications in chemistry, physics and related areas. As a result of its importance and numerous applications, several modifications of the notion of energy have been introduced since then. Most of them are defined by means of graph matrices constructed by vertex degrees. In this paper we define another type of energy called q-distance energy by means of distances and matrices. We study some fundamental properties and also establish some upper and lower bounds for this new energy type.

Abstract

In this paper, we study on normal complex contact metric manifold admitting a semi symmetric metric connection. We obtain curvature properties of a normal complex contact metric manifold admitting a semi symmetric metric connection. We also prove that this type of manifold is not conformal flat, concircular flat, and conharmonic flat. Finally, we examine complex Heisenberg group with the semi symmetric metric connection.

Abstract

In this paper, the single center vortex method (SCVM) is extended to find some vortex solutions of finite core size for dissipative 2D Boussinesq equations. Solutions are expanded in to series of Hermite eigenfunctions. After confirmation the convergence of series of the solution, we show that, by considering the effect of temperature on the evolution of the vortex for the same initial condition as in [] the symmetry of the vortex destroyed rapidly.

Abstract

Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.

Abstract

In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives.

Abstract

Fractional analysis has evolved considerably over the last decades and has become popular in many technical and scientific fields. Many integral operators which ables us to integrate from fractional orders has been generated. Each of them provides different properties such as semigroup property, singularity problems etc. In this paper, firstly, we obtained a new kernel, then some new integral inequalities which are valid for integrals of fractional orders by using Riemann-Liouville fractional integral. To do this, we used some well-known inequalities such as Hölder's inequality or power mean inequality. Our results generalize some inequalities exist in the literature.

Abstract

In this work, we consider a (2+1) dimensional nonlinear Schrödinger system which appears in the theory of nonlinear optics and describe transmission of the optical pulses in optical fibers. We attain certain special type traveling wave solutions of the under investigated model by help of finite series expansion and auxiliary differential equations. In this manner, we exploit exp(−ϕ(ε)) and modified Kudryashov approaches as solution procedures. Moreover, we make tanh ansatz because of the being even order of the reduced ordinary differential equation. The obtained solutions are in the form of dark soliton, combined soliton, symmetrical Lucas sine, Lucas cosine functions, and periodic wave solutions. We present also some graphical simulations of the solutions corresponding to values of parameters which leads to a better understanding the phenomena.

Abstract

In this paper, the problem of two equal collinear cracks is analytically studied for two-dimensional (2D) arbitrarily polarized magneto-electro-elastic materials. The electric and magnetic poling directions make arbitrary angles with the crack line. The Stroh's formalism and complex variable methodology is utilized to reduce the problem into non-homogeneous Riemann Hilbert problem. This numerical problem is then comprehended with the Riemann Hilbert way to obtain the intensity factors for stress, electric displacement and magnetic induction. A numerical contextual analysis is displayed for the BaTiO 3CoFe 2 O 4 composite. The numerical examination demonstrates that the change in electric/magnetic poling directions influences the intensity factors.

Abstract

A modified analytical solution of the quadratic non-linear oscillator has been obtained based on an extended iteration method. In this study, truncated Fourier terms have been used in each step of iterations. The frequencies obtained by this technique show good agreement with the exact frequency. The percentage of error between the exact frequency and our third approximate frequency is as low as 0.001%. There is no algebraic complexity in our calculation, which is why this technique is very easy. The results have been compared with the exact and other existing results, which are both convergent and consistent.