Browse

1 - 10 of 448 items :

  • Geosciences x
  • Geology and Mineralogy x
Clear All

Abstract

In geotechnology and mining, tools and equipment interact with aggressive geological material, causing the wear of these components. For this reason, it is important to determine the rate of abrasivity of individual geological materials, depending on the type of interaction with the tool. Various abrasivity tests have been developed in laboratories. Some of them are general, while others are special. What they all have in common is that they attempt to determine the abrasivity of rocks or soils in relation to the wear of the test specimens. This article gives an overview of the laboratory test methods for assessing the abrasivity of geological materials, which are useful in the field of geotechnology and mining engineering. General and special abrasivity tests are presented in detail. The aim of the article is to present existing laboratory tests to assess the abrasivity of rocks and soils, based on which further investigations of wear can be considered as part of a comprehensive approach to this tribological problem. Understanding of the wear mechanisms is the basis for the development of wear-resistant tools and models for predicting the tool life.

Abstract

The present article is dedicated to the study of the vibration properties of metal-based composite materials and the application of the non-destructive testing method. The main modal parameters of the metal-based composites were investigated. For experimental determination of natural frequencies and modes of oscillations, the method of scanning laser Doppler vibrometry was used. For the numerical modal analysis, the finite element method was used. The material model was a layered composite with isotropic linearly elastic layers and metal layers. The task of identifying the material model was considered as the problem of minimising the discrepancy between the calculated natural frequencies and the experimental ones. The developed method can be recommended for the determination of parameters of material models for calculating the modal characteristics of polymer–metal sandwich sheets and metallic mono-materials composite products. Methodology for identifying models of elastic behaviour of polymer–metal composite materials, based on the results of the experimental modal analysis, is presented. Wavelet-based damage detection is also presented as an appropriate approach for the identification of integral conditions of the metal–polymer–metal composite materials. Results of wavelet transform convolutions are presented.

Abstract

During 1984–1997, the ferronickel plant in Drenas used iron-nickel ore from the mines of the Republic of Kosovo: Glavica and Çikatove (Dushkaje and Suke) mines. However, during the years 2007–2017, when the plant started operating from the cessation of production, which was from 1998 to 2007, some types of iron-nickel ores from different countries began to be used, starting from iron-nickel ores from Kosovo, iron-nickel ores from Albania, ores from Indonesia, ores from the Philippines, ores from Guatemala, ores from Turkey and ores from Macedonia. The ore composition, however, is mainly oxide-laterite ore. Iron-nickel ores in the plant are characterised by high moisture content, a very important factor influencing the process of scraping the charge in rotary kilns and presenting in general. Among the iron-nickel ore used in the ferronickel plant, the ores from Albania are characterised due to their low moisture content when compared with the other ores as well as the high content of iron oxides, which affect the temperature rise inside the furnaces, as the iron ores play an important role in the pre-casting process in rotary kilns.

Abstract

The Kushk-e-Bahram Manto-type Cu deposit is located in central Iran, within Eocene to Oligo–Miocene volcanic strata which occur in the central part of the Uremia-Dokhtar Magmatic Arc (UDMA). Propylitization, silicification, argillization and carbonatization are the main types of alteration to have affected the pyroclastic and volcanic rocks. There are high amounts of oxide minerals, including malachite, azurite, hematite, magnetite and goethite. Three types of primary FIs have been determined in the Kushk-e-Bahram deposit, namely; I: two-phase liquid-rich FIs (L+V), II: mono-phase liquid FIs, III: two-phase vapour-rich FIs which have been identified based on petrographical studies. Based on FI studies of co-existing quartz and calcite, homogenization temperatures (Th) must have been between 67 and 228°C, with an average of 158°C. Moreover, salinity is between 14.0–30.3 wt% NaCl, equivalent to a 19.6% average. Fluid density values vary from 0.8 to 1.1 gr/cm3. Based on FI data and related diagrams, the depth of their trapping was estimated to be <200 m and ore formation occurred at pressures of <50 bars. Consequently, mineralogy, host rock and FIs characteristics in the Kushk-e-Bahram deposit are similar to the Manto-type Cu deposits in Mesozoic-Cenozoic volcanic belts of Iran and South America.

Abstract

An overview is presented of gemstones from eastern Kazakhstan in terms of their geographical distribution, geological provenance and genesis, gemmological characteristics, historical use and current applications. Locally occurring precious, semi-precious and decorative stones were extracted and traded along the northern part of the Silk Road that traversed the area in earlier historical times. Currently, non-metallic minerals, which largely originate from mafic igneous and metamorphic bodies of the Altay and Kalba Mountains of Kazakhstan, still are insufficiently known and exploited industrially only marginally. For the present study, selected depositories of coloured stones at the Mineralogy Museum of the East Kazakhstan State Technical University were used, supplemented by the newly collected material during personal fieldwork in the southern Altay between 2005 and 2015. Standard documentation of the gemstones selected is provided, alongside with their known occurrence sites and an evaluation of the perspective gemstone-bearing deposits with respect to regional morphostructural bedrock characteristics. The most precious gemstones include topaz, corundum (sapphire and ruby), beryl (emerald and aquamarine), coloured tourmalines, agates as well as diamonds. Despite the great variety, the majority of these traditionally most valued stones are currently commercially not viable, unlike high-quality decorative stones.

Abstract

The present study focuses on alternative methods of exploiting lignite in comparison to conventional opencast mining and combustion in power plants for the generation of electricity. In Poland, opencast lignite pits cover large areas, creating social and environmental conflicts. In order to stabilise the production level of electricity and reduce the negative effects of opencast mining, alternative ways of exploiting lignite are suggested, one of these being underground gasification in situ. The Złoczew lignite deposit, which will most likely be exploited in the near future, provides an opportunity to discuss the unconventional method of underground coal gasification (UCG). On the basis of technological and geological criteria that have been established to determine the suitability of Polish lignite for underground gasification, resources to be used this way have been estimated. Through gasification, over 15 million tonnes of lignite can be utilised, which is about 2.5 per cent of resources of the Złoczew deposit intended for opencast mining. With this in mind, we suggest to take action by starting a pilot installation, to be followed by a commercial one for underground gasification after completion of superficial mining. Naturally, any future application of this method will be preceded by assessment of geological conditions at the Złoczew opencast pit.

Abstract

Leonard Horner (1785–1864) was a pioneer in the study of loess. His 1836 paper on the geology of Bonn contained detailed descriptions of loess in the Rhine valley. He identified and presented loess as an interesting material for geological study. He investigated loess in the crater of the Rodderberg with Charles Lyell in 1833. He presented the first significant paper on loess in Britain in 1833, but it was not published until 1836. With the assistance of G.A. Goldfuss and J.J. Noegerath he conducted early studies of the Siebengebirge and published the first geological map of the region, and the first picture of loess, at Rhondorf by the Drachenfels. He became the eleventh person to be included in the list of loess scholars which Charles Lyell published in volume 3 of the Principles of Geology. These were Leonhard, Bronn, Boue, Voltz, Steininger, Merian, Rozet, Hibbert in 1833, Noeggerath, von Meyer in 1835, Horner in 1837. Horner arrived after the publication of his studies on the loess at Bonn in 1836.