Browse

1 - 10 of 207 items :

  • Tools and Methods x
  • Process Engineering and Industrial Engineering x
  • Management Accounting, Financial Controlling, Cost Calculation, Investment x
Clear All

Abstract

Dynamic development of 3D printing technology contributes to its wide applicability. FDM (Fused Deposition Method) is the most known and popular 3D printing method due to its availability and affordability. It is also usable in design of technical objects – to verify design concepts with use of 3D printed prototypes. The prototypes are produced at lower cost and shorter time comparing to other manufacturing methods and might be used for a number of purposes depending on designed object’s features they reflect. In the article, usability of 3D printing method FDM for designing of technical objects is verified based on sample functional prototypes. Methodology applied to develop these prototypes and their stand tests are covered. General conclusion is that 3D printed prototypes manufactured with FDM method proved to be useful for verifying new concepts within design processes carried out in KOMAG.

Abstract

The aim of the article is to present the results of laboratory analyses determining the content of rare earth elements (REE) in hard coal type 31.1. Coal was extracted directly from the mining excavation located in the Upper Silesian Coal Basin. Mass spectrometry tests with ionization in inductively coupled plasma (ICP-MS), were aimed at the quantitative analysis of the share of REE in coal, taking into account the economic aspects of recovery of these elements. Fine ground hard coal samples and ashes obtained after coal burning were assessed for the rare earth elements concentration. Results of the rare earth elements concentration (lanthanum and cerium) in hard coal are similar in the values obtained in previous tests. The current analyses present higher concentration of europium or neodymium. The article also contains the concept of possible future research work, consisting in the recovery of rare earth elements using, among others, a classifying hydrocyclone.

Abstract

The inducted paper discusses economic effect resulting from industrial activities realized within national economy of the chosen country. The country of selection represents Poland. Economic impact is scrutinized through reflexing on gross domestic product. Industrial segment is deputized over various indicators whose scope strives to include different views on the industry field. The main point of this paper is to identify the exact relationship between dependent variable (gross domestic product) and a group of independent variables (picked industrial representatives). Such determination offers thereafter the possibility to estimate dependent variable’s value and its next forecast. What is more, the eventual sorting of involved industrial indicators is facilitated according to their importance. The multiple regression analysis is utilized as the method of investigation. Findings answer the stated questions and aims with a suggestion of an appropriate equation.

Abstract

Mining industry is currently one of the biggest industries in the world. All mines produce “indispensable” minerals, starting from fuels such as coal and ending with noble metals such as gold or copper. Mines in the world compete in the volumes of mined minerals what requires use of state-of-the-art, more efficient and, and what is more important, safer machines. Such trend favors development of technology and mobilize engineers to adapt the technologies that were used so far in easier environment to the needs of the mining industry.

The article presents the issue of energy recuperation in mining battery locomotives. Simulation tests of the power supply and control system of the Lea type battery locomotive are discussed. The results of tests on the electric energy consumption of the locomotive during the operational change in the mine were presented, which were referred to the simulation results. Factors influencing the efficiency of energy recovery and the risk resulting from hydrogen emission in the recuperation process have been indicated. Also discussed is the study of the concentration of hydrogen concentration emitted from the battery of lead-acid cells during their recharging in the process of electrical braking with energy recuperation.

Abstract

The main aim of presented article is present methodology how sophisticated products as compressor equipment can be considered and analyzed as a complex technical system which consists of jointly operating components – a set of hardware, software, operational staff and documented information. In process modeling, these components can be in different processes of inputs, outputs, mechanisms (resources) or management. Based on the regulatory requirements for each component of the system, a key indicator efficiency can be identified. This will allow to control the process and make appropriate decisions to improve the system. The application of the proposed methodology for the development and implementation of an integrated management system reduce the cost of resources and significantly improve the quality of the implementation of processes.

Abstract

Numerical simulation method of the working process of a centrifugal unit contactless face impulse seal is proposed. A seal functioning physical model was created. Its operation key aspects that are not taken into account in the traditional methods of calculating contactless impulse seals are identified. A numerical simulation of seal working process based on the Reynolds equation solution for the medium vortex-free motion in the gap between moving surfaces is proposed. Hypothesis that simplify the equation’s numerical solution for the face impulse seal is formulated. The numerical solution is obtained using the boundary element method. Based on the obtained numerical solution, the distribution of the working medium pressure field in the seal gap is simulated.

Abstract

The need to undertake research work on the commercialization of results from scientific research and development projects emerged from the Author’s professional experience as well as the incomprehensive literature on the role of Polish research institutes in the process of technology transfer and commercialization of innovative solutions, in particular in the case of mining machinery and equipment. From the available literature, the commercialization of research results and technology transfer are analyzed from the perspectives of academia and entrepreneurs, but there is no analysis of this challenge from the perspective of the research institutes which create the majority of innovative solutions implemented in Poland. The research results presented in this article identify and highlight not only the main factors which facilitate knowledge transfer in the widest sense, but also the barriers which should be overcome. An integrated commercialization model of research results, developed by the Author, is described in the article. Some examples of other models, used to assess innovative technology transfer processes, i.e. Transfer model of the Cracow University of Technology, Jolly’s model, United model (science + market), Trzmielak’s linear – subsequent model, Network – interactive model and IpOp model, are also presented. Special attention is paid to the process of generating innovative ideas and to the area of efficient project management. Based on the integrated model, practical management recommendations for the successful commercialization of innovative solutions are given. It is highlighted that the integrated model can be treated as a diagnostic tool, enabling an efficient assessment of the transfer of research results and commercialization of innovative solutions.

Abstract

Due to the implementation of environmental regulations and the continual tightening up of the limits for pollutants in combustion systems, we are being forced to pay more attention to this area. A significant source of pollutants originating from the industry is, in particular, the formation of carbon dioxide (CO2) and nitrogen oxides (NOx) in combustion systems with air intake. The control of pollutant emissions has become a global concern due to the worldwide increase in the use of fossil fuels. Besides the fact that the insufficient combustion process has a significant share of emissions in the environment, it also reduces the overall efficiency and economy of the operation using this energy source. We encounter this problem also in the operation of gas melting furnaces. Therefore, the aim of this paper was to describe the results of experimental measurements of the amount of emissions produced during the gas melting furnace KOV 010/1998 operation, which is in practice predominantly used for the melting of Aluminium alloys. Experimental measurements were performed to design the most appropriate operating mode variant of the melting furnace with regard to maximizing its productivity and at the same time to minimizing the total amount of emissions produced during one melting cycle.

Abstract

The geometric model accuracy is crucial for product design. More complex surfaces are represented by the approximation methods. On the contrary, the approximation methods reduce the design quality. A new alternative calculation method is proposed. The new method can calculate both conical sections and more complex curves. The researcher is able to get an analytical solution and not a sequence of points with the destruction of the object semantics. The new method is based on permutation and other symmetries and should have an origin in the internal properties of the space. The classical method consists of finding transformation parameters for symmetrical conic profiles, however a new procedure for parameters of linear transformations determination was acquired by another method. The main steps of the new method are theoretically presented in the paper. Since a double result is obtained in most stages, the new calculation method is easy to verify. Geometric modeling in the AutoCAD environment is shown briefly. The new calculation method can be used for most complex curves and linear transformations. Theoretical and practical researches are required additionally.

Abstract

Mine transportation of materials in underground mine workings is realized by mine underground railways as well as by suspended monorails or floor-mounted railway. Transportation is realized on tracks placed on the floor of working or on rails suspended to roadway support. Each transport operation must be preceded by a transport design project, made in accordance with obligatory legislation. A part of the project are traction calculations. Their implementation in a computer program allows for minimization of the possibility of errors during the configuration of suspended queues and conducting traction calculations, which consequently leads to improve the level of safety. The article discusses the modular Safe Trans Design system, supporting the design of auxiliary mine transportation. The system has been implemented in the mines of JSW S.A. The assumptions and structure of the system as well as algorithms of operation of the ‘configurator of transportation sets’ and ‘assessment and reporting module’ are presented. The method of creating an auxiliary mine transportation system project is presented. Safe Trans Design system is used in planning, organizational and training activities implemented as part of transport safety management in mining plants. Developed methods can be easily adapted to other legislations of hard coal producers’ countries, where suspended monorails are used in underground auxiliary mining transportation systems.