Browse

1 - 10 of 445 items :

  • Sustainable and Green Chemistry x
Clear All

Abstract

Bangladesh produces a large amount of corn, pumpkin and carrots every year. To meet its huge energy demand and to lessen dependence on traditional fossil fuel these products are cost effective, renewable and abundant source for bioethanol production. The research was aimed to evaluate Bangladeshi corn, rotten carrot and pumpkin for bioethanol production. About 100 g of substrates was mixed with 300 ml distilled water and blended and sterilized. All the experiment was conducted with a temperature of 35oC, pH 6.0 and 20% sugar concentration. For fermentation, 200 ml yeast (Saccharomyces cerevisiae CCD) was added to make the total volume 500 ml. Addition of small amount of 1750 unit α-amylase enzyme to the substrate solution was found to enhance the fermentation process quicker. After 6- days of incubation, corn produced 63.00 ml of ethanol with 13.33 % (v/v) purity. Bioethanol production capacity of two different local varieties of pumpkin (red and black color) was assessed. Red pumpkin (Cucurbita maxima L.) produces 53 ml of ethanol with purity 6 %v/v and black color pumpkin produces 40 ml of yield with a low purity 4 %v/v. Carrot (Daucus carota L.) produces 73.67 ml of ethanol with 12.66 % (v/v) purity.

Abstract

World health organization (WHO) data shows that air pollution kills an estimated seven million people worldwide every year. A nanofiber based biodegradable facemask can keep breath from smoke and other particles suspended in the air. In this study, we propose branched polymeric nanofibers as a biodegradable material for air filters and facemasks. Fibers have been elecrospun using double bubble electrospinning technique. Biodegradable polymers, PVA and PVP were used in our experiment. Two tubes, each filled with one of the polymers, were supplied with air from the bottom to form bubbles of polymer solutions. DC 35-40 kV was used to deposit the fibers on an aluminum foil. Results show that the combination of polymers under specific conditions produced branched fibers with average nanofibers diameter of 495nm. FT-IR results indicate the new trends in the graph of composite nanofibers.

Abstract

Several techniques, in which different homogenous catalysts and procedures, that are in use for transesterification of a vegetable oil or an animal fat have been successful in synthesizing biodiesel, although with some certain limitations. For such a purpose, among the catalysts employed are acidic as well as basic catalysts. It has been found that acidic catalysts can be tolerant with a high content of free fatty acids found in those low value feedstock oils/fats to be transesterified, although some sort of pretreatment by means of esterification might be required in order to synthesize biodiesel. Moreover, with employing homogenous acidic catalysts, it seems that biodiesel purification procedures are simplified; thus, reducing synthesis cost. In fact, these features of homogenous acidic catalysts render them advantageous over basic ones. With basic homogenous catalysts this; however, has not been possible due to the development of saponification reaction. To effectively perform, such catalysts require that the content of free fatty acids in the feedstock oil/fat is minimal. This requirement is also applicable to the moisture level in the feedstock. In terms of corrosive effects; nevertheless, acidic catalysts are disadvantageous compared to basic ones.

Abstract

Christia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.

Abstract

Fall armyworm (Spodoptera frugiperda, J.E. Smith) is a pest with devasting effects on maize. A laboratory biassay was conducted to analyse the phytochemicals and determine the efficacy of M. spicata and R. officinalis extracts on FAW. Treatments were laid out in a Completely Randomized Design (CRD) with 3 replications. The factors included solvent [Methanol (Me), dichloromethane (DCM), distilled water (Di)] and the plant species (M. spicata and R. officinalis). Coragen SC 200 (Co) and Distilled water (Di) were the positive and negative controls, respectively. FAW rearing, plant extract preparation and phytochemical screening were done using standard procedure. Data collection and analysis was done using standard procedures. The extract yield was highest for R. officinalis regardless of the solvent used. Me-R. officinalis and Di-M. spicata extracts yielded the highest. Saponins, glycosides, alkaloid, flavonoids and tannins. Flavonoid contents were 7.9036 mg/mL and 6.0073 ± 0.6117 mg/mL in methanolic extract of M. spicata and R. officinalis, respectively. M. spicatha and R. officinalis extracts caused 100% mortality to 3rd instar larvae. Based on the findings, both M. spicata and R. officinalis have several secondary metabolites that confer insecticidal activity of the plants against FAW, hence should be evaluated under field conditions.

Abstract

The aim of this study was to evaluate the polycyclic aromatic hydrocarbons load in soils of Ogale community, Rivers State, Nigeria and as well delineate the lateral and vertical extensions of the soils and groundwater. Geo-electric characterization of the soils and groundwater, using Electrical Resistivity methods (vertical electrical sounding, VES by Abem Terrameter and Gas chromatograph - Flame Ionization Detector (GC-FID) for finger-print was employed. The interpreted VES results revealed four geo-electric subsurface layers. The first layer which has a resistivity value of 60Ωm and a thickness of 2.0M was interpreted as top soil. Underlying the first layer is the second layer which had a resistivity value of 122Ωm with a thickness of 3m, interpreted as lateritic sand. The third layer had a resistivity value of 750Ωm and a thickness of 9.0m, and is interpreted as coarse sand. The fourth layer which had a resistivity value of 1255Ωm and a thickness of 49m is interpreted as very coarse sand. Borehole one was used as control and it is 1.85km away from the Resistivity sampling points. The results revealed that the presence of C10-C40 hydrocarbon which indicates un-weathered to fresh hydrocarbon in parts of the study area and heavy metals were below detection limits. The vulnerability of the aquifer to hydrocarbon contamination was due to high permeability, unconsolidated coarse grained and poorly sorted sands, of the vadose zone as well as shallowness of the aquifer. It is recommended that boreholes in the study area should be of deeper depths, and well constructed to avoid contaminated water from the polluted zone entering the borehole through the annulus.

Abstract

This study aims to synthesize hybrid compounds “via” the coupling of sulphonamide and benzothiazole into one structure that may have improved antibacterial property. The N-(biphenyl-4-yl) thiourea (1) used for the synthesis of the targeted sulphonamides was obtained by reacting diphenylamine and ammonium thiocyanate at room temperature. Cyclization of N-(biphenyl-4-yl)thiourea gave 2-amino-6-phenylbenzothiazole (2) which reacted with benzenesulphonyl chloride and para-toulene sulphonyl chloride to give the targeted sulphonamides (3a & 3b). The synthesized compounds were characterised using melting point, infra-red spectroscopy, nuclear magnetic resonance and elemental analysis. Anti-bacterial screening of the synthesised compounds indicated that all the compounds showed anti-bacterial properties, except 2-amino-6-phenylbenzothiazole that did not show any activity on Escherichia coli.

Abstract

The paper presents results of the measurements of the tropospheric ozone (O3) concentration and meteorological parameters: temperature, air pressure, relative humidity, speed and wind direction. The data were collected from January 2016 to December 2016 at station located in locality Centre (Banja Luka), Republic of Srpska, Bosnia and Herzegovina. Ozone is one of the most harmful pollutants to plants and health and highly reactive secondary pollutant. The present study covers investigation of the relationship between the concentration of ozone and meteorological parameters as well as time variations of ozone concentration (by hours, months, seasons). This topic has not been studied up to now in this region, although the recent research data indicates that there is a correlation between them and previously obtained from the world’s relevant scientific centres, as already cited above. Statistical analysis confirms string of rolls, which shows directional connection between tropospheric ozone and meteorological parameters, specially temperature (r = 0.148), air pressure (r = –0.292) and relative humidity (r = –0.292). These parameters are the most important meteorological factors influencing the variation in ozone levels during the research. The correlation ozone concentrations with speed and direction of wind is not significant, like other parameters.

Abstract

The aim of the study was to determine the effect of electromagnetic fields and their shielding on the growth of dwarf runner bean Phaseolus coccineus L. Three sectors were separated on the device emitting electromagnetic fields: “E” - sector emitting electromagnetic radiation with the predominance of the electrical component, “EM” - sector emitting electromagnetic radiation without domination of its components and “M” - sector with a predominance of magnetic component. Fields generated by the device were also shielded with ADR TEX, a screen based on a nanocomposite in which the electric component of the electromagnetic radiation is absorbed by water dispersed within a dielectric matrix in various ways. The composites exhibit high dielectric absorption and shield electric fields within the frequency range from ~100 mHz to ~100 kHz. Electromagnetic fields with the predominance of the electrical component and without domination of its components delayed the initial emergence of runner bean seedlings. Shielding of electromagnetic field without domination of its components with ADR TEX screen protected against this negative impact on the emergence rate of young runner bean seedlings. Exposure of plants to differentiated electromagnetic fields adversely affected their growth. Plants exposed to electromagnetic radiation without domination of its components had the lowest height and the shortest internodes. Shielding of electromagnetic fields with ADR TEX screen efficiently protected against their negative impact on the plant growth. Electromagnetic fields and their shielding did not influence the size of leaves and the index leaf greenness (SPAD).

Abstract

In the recent years photovoltaic (PV) industry has experienced a major growth, caused by the ever present annual decrease in module production prices and the expanding awareness of the general public in terms of renewable energy. There are numerous ways to implement PV modules as an additional energy source for a building, be it mounted on the rooftop, or building integrated (BIPV). An analysis of BIPV consisting of 8 modules with the power of 250 Wp each was carried out for the building of the Chemistry Faculty of Gdansk University of Technology (GUT). It included monthly irradiance and energy generation values and compared them to data obtained by the means of PV-GIS system, after inserting site specific coordinates. Additional research on the same type of a single module with the power of 270 Wp was conducted to provide more insight in this matter. A comprehensible analysis allows for defining a final conclusion for the decrease in energy yield for GUT BIPV installation. Data outputs are lower than expected based on PV-GIS values, as for the most time the facade mounted PV system experiences partial soft shading from the nearby park. Furthermore, it is not located directly facing south, but rather south-east which does not prompt ideal working conditions.