Browse

1 - 10 of 826 items :

  • Functional and Smart Materials x
  • Materials Characterization and Properties x
Clear All
Facile chemical strategy to synthesize Ag@polypyrrole microarrays and investigating its anisotropic effect on polymer conductivity

Abstract

A facile chemical approach was developed to fabricate microarrays (MAs) of Ag@polypyrrole nanocables (NCs). The strategy involved crosslinking the NCs by tetraethoxy silane (TEOS) under continuous pulse sonication without using a substrate. The material was characterized by scanning electron microscope (SEM) coupled with EDX, which revealed the longitudinal interconnections within the nanocables and creating unidirectional alignment in the form of MAs. FT-IR and Raman spectroscopy was employed to characterize the encapsulating polymer as polypyrrole (ppy) around Ag nanowires (NWs). The microarrays produced red shift in surface plasmon resonance (SPR) of Ag NWs, and drastically improved the thermal stability and conductivity of encasing ppy. It has imparted anisotropic conductivity effect on ppy which resulted in sharp decrease in resistivity from 8.35 × 1010 Ω to 2.449 Ω, when NCs were isolated and crosslinked into MAs form, respectively. The drastic decrease in resistivity of ppy was due to the anisotropic effect produced by the MAs format of NWs.

Open access
Optical and thermal properties of TeO2–B2O3–Gd2O3 glass systems

Abstract

New glass samples with composition (1 – x)[(TeO2)70(B2O3)30] – x(Gd2O3) with x = 0.2, 0.4, 0.6, 0.8 and 1.0 in mol% have been synthesized by conventional melt-quenching techniques. X-ray diffraction (XRD) studies were performed in order to confirm the amorphous nature of the samples. The density of the samples has been found to vary with the Gd2O3 content, whereas an opposite trend has been observed in the molar volume. The analysis of Fourier Transform Infrared (FT-IR) spectroscopy of the samples showed that the glass network is mainly built of TeO3, TeO4, BO3 and BO4 units. The addition of Gd2O3 changed the refractive index, optical band gap and Urbach energy of the glass samples. The thermal properties of the studied glasses were investigated by measuring the thermal diffusivity of the samples by using photoflash method at room temperature.

Open access
Study of crystallographic, optical and sensing properties of Na2WO4 films deposited by thermal evaporation with several thickness

Abstract

Na2WO4 films have been grown at 400 °C using thermal evaporation technique. Their structural properties were characterized by XRD, while their chemical composition was verified by both EDX and X-ray photoelectron spectroscopy (XPS). The evolution of crystallinity was studied as a function of film thickness that ranged from 500 nm to 3000 nm. The grain size increased with increasing film thickness. The surface morphology of the prepared films was studied using scanning electron microscope (SEM) and atomic force microscopy (AFM). It has been observed that the average transmittance of samples in the visible and near infrared range has varied from 90 % to 78 % with the film thickness. The optical band gap of the Na2WO4 films varied from 3.8 eV to 4.1 eV. The crystalline size increased with increasing thickness and showed better sensing response to gases. Thus, this study confirmed the possibility of using Na2WO4 thick films as a sensor element for detection of ethanol (C2H5OH), acetone (C3H6O) methanol (CH3OH) and ammonia hydroxide (NH4OH) vapor at room temperature, where thicker films exhibited sensing properties with a maximum sensitivity at 25 °C in air, especially for NH4OH.

Open access
Synthesis, morphology, electrical conductivity and electrochemical properties of α-Ni(OH)2 and its composites with carbon

Abstract

A simple and effective hydrothermal synthesis of spherical α-Ni(OH)2 particles and α-Ni(OH)2/carbon composites was proposed. The mechanism of ultrafine α-Ni(OH)2 phase forming and correlations between synthesis conditions, morphology, electrical conductivity were analyzed. It was found that carbon nanoparticles form an electric conductive cover on nickel hydroxide microparticles during synthesis which increases overall electronic conductivity of the composite material. α-Ni(OH)2 and α-Ni(OH)2/C samples were tested as electrodes for hybrid supercapacitors. It was found that carbon coverings stabilize α-Ni(OH)2 phase in the alkaline medium. The comparison of the influence of laser irradiation and ultrasonic treatment on the electrochemical performance of the obtained materials was made.

Open access
Thin film characterization of Ce and Sn co-doped CdZnS by chemical bath deposition

Abstract

Cerium and tin co-doped cadmium zinc sulfide nanoparticles (CdZnS:Ce)Sn were synthesized by chemical bath deposition method with a fixed concentration of Ce (3.84 mol%) and three different concentrations of Sn (2 mol % and 4 mol% and 6 mol%). They showed broad photoluminescence spectra in the visible region under the ultraviolet excitation with a wavelength of 325 nm. The photoluminescence emission peaks were obtained at 540 nm, 560 nm and 570 nm for CdZnS, CdZnS:Ce and (CdZnS:Ce)Sn thin films, respectively having different concentrations of Sn. It has been observed that the photoluminescence emission peak shifted to higher wavelength region with an increase in intensity by Ce doping and Ce–Sn co-doping. Further enhancement in luminescence peak intensity has been observed by increasing concentration of Sn in (CdZnS:Ce)Sn films. Average crystallite size, measured from XRD data, was found to be increased with increasing concentration of Sn. An increase in the concentration of Sn shifted the UV-Vis absorption edge toward the higher wavelength side. Energy band gap for undoped CdZnS and Ce–Sn co-doped CdZnS varied from 2.608 eV to 2.405 eV. The SEM micrographs of CdZnS and (CdZnS:Ce)Sn films showed the leafy-like and ball-like structures. The presence of Sn and Ce was confirmed by EDAX analysis.

Open access
Effect of thermal annealing on structural and optical properties of In doped Ge-Se-Te chalcogenide thin films

Abstract

Thin films of Ge10−xSe60Te30Inx (x = 0, 2, 4 and 6) were developed by thermal evaporation technique. The annealing effect on the structural properties of Ge10−xSe60Te30Inx (x = 0, 2, 4 and 6) films has been studied by X-ray diffraction (XRD). The XRD results indicate amorphous nature of the as-prepared films whereas crystalline phases in annealed films were identified. Structural parameters such as average crystallite size, strain, and dislocation were determined for different annealing temperatures. Effect of annealing on optical constants of prepared films has been explored using UV-Vis spectrophotometer in the wavelength range of 400 nm to 1000 nm. Various optical constants were determined depending on annealing temperature. It has been noticed that the film transparency and optical bandgap EG have been reduced whereas the absorption coefficient α and extinction coefficient k increased with increasing annealing temperature. It was found that the prepared samples obey the allowed direct transition. The reduction in optical bandgap with annealing temperature has been described by Mott and Davis model. Due to annealing dependence of the optical parameters, the investigated material could be utilized for phase change memory devices.

Open access
Structural and electrical properties of new core-shell silver poly(m-toluidine-co-2-bromoaniline) nanocomposites

Abstract

In this article, we report the synthesis and characterization of silver dispersed poly(m-toluidine-co-2-bromoaniline) copolymer synthesized by chemical oxidative polymerization method. The synthesized copolymer composites were subjected to different analytical characterization methods, such as FT-IR, UV, XRD, SEM, photoluminescence and electrical conductivity studies. All the polymer samples are found to be soluble in common organic solvents. UV absorption spectra show a red shift when silver nanoparticles are dispersed in the copolymer. The characteristic peaks observed in FT-IR spectra confirm the formation of the copolymer. XRD pattern reveals the crystalline nature of the copolymer composites and sharp peaks in the spectra confirm the presence of silver particles. The silver nanoparticles change the surface morphology in the form of perfect encapsulation. The electrical conductivity of the polymer composites is found to vary from 10−4 S/cm to 10−6 S/cm. PL study reveals the charge transfer between the copolymer and the silver particles.

Open access
Structure and performance optimization of phenol polyphosphazene grafted by 2,4-dinitroaniline containing small nonlinear optical molecules

Abstract

Electro-optic (EO) polymers, possessing high EO coefficient and low dielectric constant, are considered to be a new generation of nonlinear optical materials that have great application prospect in photo-communication, information storage, and data processing. The host-guest structure of EO polymers is the most typical one in this field. However, the phase separation during polarization between the host polymer and the guest nonlinear optical molecule (NLO) limits potential applications of the material. To solve the problem, a new synthetic method was designed in this paper. First, 2,4-dinitroaniline was grafted to phenol polyphosphazene by chemical method for polar improvement of the main chain. Then, another small NLO molecule was mixed into the polymer by physical method for further improvement of EO coefficient. The preparation process was studied and the structure of the product was characterized. The effects of different NLO mixing proportions and different polarizing temperatures on EO coefficient were investigated in details. Orientation stability of the sample was tested. Experimental results show that our products possess not only high EO coefficient but also good phase stability, which makes them good candidates for the application in information technology.

Open access
Deposition time and annealing effects on morphological and optical properties of ZnS thin films prepared by chemical bath deposition

Abstract

Nanocrystalline zinc sulfide thin films were prepared on glass substrates by chemical bath deposition method using aqueous solutions of zinc chloride, thiourea ammonium hydroxide along with non-toxic complexing agent trisodium citrate in alkaline medium at 80 °C. The effect of deposition time and annealing on the properties of ZnS thin films was investigated by X-ray diffraction, scanning electron microscopy, optical transmittance spectroscopy and four-point probe method. The X-ray diffraction analysis showed that the samples exhibited cubic sphalerite structure with preferential orientation along 〈2 0 0〉 direction. Scanning electron microscopy micrographs revealed uniform surface coverage, UV-Vis (300 nm to 800 nm) spectrophotometric measurements showed transparency of the films (transmittance ranging from 69 % to 81 %), with a direct allowed energy band gap in the range of 3.87 eV to 4.03 eV. After thermal annealing at 500 °C for 120 min, the transmittance increased up to 87 %. Moreover, the electrical conductivity of the deposited films increased with increasing of the deposition time from 0.35 × 10−4 Ω·cm−1 to 2.7 × 10−4 Ω·cm−1.

Open access
Development of sol-gel derived gahnite anti-reflection coating for augmenting the power conversion efficiency of polycrystalline silicon solar cells

Abstract

The present research is focused on developing ZnAl2O4 (gahnite) spinel as an antireflection coating material for enhanced energy conversion of polycrystalline silicon solar cells (PSSC). ZnAl2O4 has been synthesized using dual precursors, namely aluminum nitrate nonahydrate and zinc nitrate hexahydrate in ethanol media. Diethanolamine has been used as a sol stabilizer in sol-gel process for ZnAl2O4 nanosheet fabrication. ZnAl2O4 nanosheet was deposited layer-by-layer (LBL) on PSSC by spin coating method. The effect of ZnAl2O4 coating on the physical, electrical, optical properties and temperature distribution in PSSC was investigated. The synthesized antireflection coating (ARC) material bears gahnite (ZnAl2O4) spinel crystal structure composed of two dimensional (2D) nanosheets. An increase in layer thickness proves the LBL deposition of ARC on the PSSC substrate. The ZnAl2O4 2D nanosheet comprising ARC on the PSSC was tested and it exhibited a maximum of 93 % transmittance, short-circuit photocurrent of 42.364 mA/cm2 and maximum power conversion efficiency (PCE) 23.42 % at a low cell temperature (50.2 °C) for three-layer ARC, while the reference cell exhibited 33.518 mA/cm2, 15.74 % and 59.1 °C, respectively. Based on the results, ZnAl2O4 2D nanosheets have been proven as an appropriate ARC material for increasing the PCE of PSSC.

Open access