Browse

You are looking at 1 - 10 of 57 items for :

  • Materials Characterization and Properties x
  • Computer Sciences x
Clear All
Open access

Damjan Klobčar, Maja Lindič and Matija Bušić

Abstract

This paper presents an overview of additive manu­facturing technologies for production of metal parts. A special attention is set to wire arc additive manufac­turing (WAAM) technologies, which include MIG/MAG welding, TIG welding and plasma welding. Their advan­tages compared to laser or electron beam technologies are lower investment and operational costs. However, these processes have lower dimensional accuracy of produced structures. Owing to special features and higher productivity, the WAAM technologies are more suitable for production of bigger parts. WAAM technology has been used together with welding robot and a cold metal transfer (CMT) power source. Thin walls have been produced using G3Si1 welding wire. The microstructure and hardness of produced structures were analysed and measured. A research was done to deter­mine the optimal welding parameters for production of thin walls with smooth surface. A SprutCAM software was used to make a code for 3D printing of sample part.

Open access

Ohanyiri C. Chiemezie and Omotowo B. Aminat

Abstract

Geochemical studies of claystone deposits from the Patti Formation in the southern Bida Basin, north-Cen­tral Nigeria, were carried out on representative sam­ples to determine the basin’s depositional conditions, provenance and tectonic setting. The localities within the study area included Gegu, Ahoko, Ahoko-Etigi, Omu and Idu. Semi-quantitative phase analysis using the Rietveld method and X-ray powder diffraction data revealed that the claystone samples had prominent kaolinite with other constituents such as quartz, illite-mus­covite, K-feldspar, pyrite, marcasite, anatase, rutile and gorceixite. Enrichment of Al2O3, Ba, Th, Sr, Cr and La suggests that these elements are primarily controlled by the domi­nant clay minerals. Geochemical parameters such as U, U/Th, Ni/Co, V/Cr and Cu/Zn ratios strongly implied that these claystones were deposited in an oxidising environment. Provenance deducing ratios for felsic, mafic and basic igne­ous rocks were compared. Al2O3/TiO2 ratio suggested intermediate to felsic rocks as the probable source rocks for the claystone samples; however, Y/Ni, Cr/V, La/Sc and Th/Sc ratios suggested a felsic progenitor. The tectonic discrimination diagram showed that the samples’ plot was within the region specified for passive margin-type tectonic setting.

Open access

A.A. Alabi, A.O. Adewale, J.O. Coker and O.A. Ogunkoya

Abstract

Geophysical and geotechnical techniques were used to investigate the sub-surface information of a proposed site for a hostel construction at Federal University of Agriculture, Abeokuta. Ten vertical electrical sounding (VES) stations were adopted. Typical sounding curves obtained include the HA, KH, AKH and KQH types, of which the AKH-type consists of 40% of the survey points, and a maximum of five geo-electric sub-surface layers were delineated. Laboratory analyses were performed to investigate particle size distribution, Atterberg limit, compaction limit, California bearing ratio (CBR) and specific gravity. The CBR revealed that all soil samples, except L4, are mechanically stable and have high load-bearing capacity. The Atterberg limit test and the geo-electric section showed that the second layer of VES 4 is composed of sandy clay with high plastic index and low liquid limit, which may pose a threat to the foundation of any engineering structure. VES locations 5, 6 and 8 were identified as high groundwater potential zones suitable for optimum groundwater abstraction. The study area is suitable for both shallow and deep foundations, however VES 4 and VES 5 require reinforcement.

Open access

N. Varadarajan and B.K. Purandara

Abstract

Waterlogging and salinity are the common features associated with many of the irrigation commands of surface water projects. This study aims to estimate the root zone salinity of the left and right bank canal commands of Ghataprabha irrigation command, Karnataka, India. The hydro-salinity model SaltMod was applied to selected agriculture plots at Gokak, Mudhol, Biligi and Bagalkot taluks for the prediction of root-zone salinity and leaching efficiency. The model simulated the soil-profile salinity for 20 years with and without subsurface drainage. The salinity level shows a decline with an increase of leaching efficiency. The leaching efficiency of 0.2 shows the best match with the actual efficiency under adequate drainage conditions. The model shows a steady increase, reaching the levels up to 8.0 decisiemens/metre (dS/m) to 10.6 dS/m at the end of the 20-year period under no drainage. If suitable drainage system is not provided, the area will further get salinised, thus making the land uncultivable. We conclude from the present study that it is necessary to provide proper drainage facilities to control the salinity levels in the study area.

Open access

Oluseun Adetola Sanuade, Abayomi Adesola Olaojo, Adesoji Olumayowa Akanji, Michael Adeyinka Oladunjoye and Gabriel E. Omolaiye

Abstract

This geophysical study was carried out to determine the occurrence of phosphate nodules in the Oshoshun Formation of the Dahomey Basin, Southwestern Nigeria. The electrical resistivity method, comprising 1D vertical electrical sounding (VES; using Schlumberger array) and 2D geoelectrical imaging (using Wenner array), was used to determine the nature and depth of occurrence of the phosphate nodules. Six profile lines were established within the study area, and inverted sections were generated from the apparent resistivity data using DIPRO inversion algorithm. Five VES points were also acquired in the study area, and Win- Resist programme was used to process and interpret the field resistivity data. Four pits were dug along the profiles to verify the interpreted results. The results obtained by both techniques reveal similar geoelectric units: the top soil, clay, clayey sand and clay at different depths. These layers host pockets of phosphate nodules (78-≥651 Ωm) with varying thicknesses. The strong correlation between the lithology profiles obtained from the pits and the interpreted results of the inverted apparent resistivity sections demonstrates the efficacy of the electrical resistivity method in characterising phosphate occurrence within the formation.

Open access

Nodirjon Abdihakimovich Doniyarov and Ilkhom Ahrorovich Tagayev

Abstract

The paper presents the results of processing low-grade phosphorites by microorganisms of activated sludge from the biochemical purification production unit of JSC “Navoiazot”. The obtained results on the leaching of rare and rare-earth elements into the liquid phase make it possible to separate them and thus enrich the phosphorites. Other options are the gravitational separation of the crushed calcite particles. In addition to this, there is a real possibility of creating complex organomineral fertilisers.

Open access

Akanbi Olanrewaju Akinfemiwa

Abstract

Studies of structural and hydrogeomorphological units (HGU) that are indicators of groundwater occurrence were carried out across an area extent of more than 700 km2 within the hard rock terrain of southwestern Nigeria. These studies integrated geological remote sensing techniques (RST) and geographical information system (GIS) methods to generate thematic maps that included elevation, drainage, lineaments and vegetation index for characterising the attributes of groundwater occurrence across the area. The results revealed that the lineament system is mainly rectilinear with major trends of NNW-SSE and NE-SW on the gneiss, NW-SE and NE-SW on porphyritic granite and NNE-SSW, NW-SE and E-W on migmatite. The discharge zones in the area are the lowland terrains underlain by gneiss and amphibolite. Similarly, variably directional discontinuities that are related to rock contacts are equally laden with groundwater. Conversely, the recharge areas are the high-lying terrains characterised by higher fracture density and underlain by porphyritic granite and migmatite. Additionally, there are evidences of groundwater seepage along the major river channels. Therefore, besides the rock structures, landform is another crucial factor that guides groundwater distribution in the study area.

Open access

Zorana Lanc, Milan Zeljković, Aleksandar Živković, Branko Štrbac and Miodrag Hadžistević

Abstract

This paper presents the experimental determination of the dependence of emissivity of brass on surface roughness and temperature. The investigation was conducted using the infrared thermographic technique on brass alloy C27200 workpieces with different degrees of surface roughness, during the continuous cooling process. The results obtained showed that the emissivity of the chosen brass alloy increases with greater surface roughness and decreases during the cooling process, its value ranging from 0.07 to 0.19. It was concluded that surface roughness has a greater influence on the increase of the emissivity at higher temperatures, which can be seen in the three-dimensional infrared images. Multiple regression analysis confirmed a strong correlation between the examined parameters and the emissivity, and an original multiple regression model was determined.

Open access

Matej Nagy

Abstract

The complicated rock structures and the stability of surrounding rocks of the underground powerhouse are key ground mechanical challenges for hydropower projects. In this paper, an example of contributing self-support capacity of rock mass to evaluate optimised support for long-term usage of structure is given. It describes importance of investigations in the initial in situ stress distribution, rock mechanical and geological properties, engineering rock mass classifications by different methods, numerical modelling, comparison of tools for stability and support analysis and proper stability control for rock excavation and support. The results show that after underground excavations in hard rock, detailed analysis of measures to investigate deformation and self-supporting capacity creation is useful and a cost-saving procedure.

Open access

Tomaž Pepelnjak, Tomaž Bren, Bojan Železnik and Mitja Kuštra

Abstract

The development of the product from stainless steel, which is produced for the client in large series, is presented. Technological optimisation was mainly focussed on the design of the deep drawing process in a single operation, which proved to be technologically unstable and therefore unfeasible for the prescribed shape of the product. Testing of prototype products showed unacceptable wrinkling due to the cone-shaped geometry of the workpiece. For this purpose, the research work was oriented towards technological optimisation of forming operations and set-up of proper phase plan in order to eliminate the wrinkling of the material. Testing of several different materials of the same quality was performed to determine the appropriate input parameters used for digital analyses. The analyses were focussed towards the set-up of optimal forming process and appropriate geometry of the corresponding tool, which allowed deep drawing of the workpiece without tearing and/or wrinkling of the material. Performed analyses of the forming process in the digital environment were tested with experiments, which showed a good correlation between the results of both development concepts.