Browse

1 - 10 of 844 items :

  • Biotechnology x
  • Process Engineering x
Clear All
Antimicrobial materials properties based on ion-exchange 4A zeolite derivatives

Abstract

Zeolites are nanoporous alumina silicates in a framework with cations, exhibiting ion-exchange properties with metal ions making them possible antimicrobial materials. The aim of this study was to evaluate the antimicrobial activity of ion-exchanged zeolites and the toxic potential of these materials. Zeolite-Co2+ and Li+ exhibited the most effective inhibition on Staphylococcus aureus growth than in other microorganisms (Escherichia coli and Pseudomonas aeroginosa) in low concentrations. Zeolite-Cu2+ presented higher zone of inhibition when tested against Candida albicans, while Zeolite-Zn2+ showed similar effectiveness among all the microorganisms. When ion-exchanged zeolites were used in effective concentrations to achieve antimicrobial activity, no alterations against bioindicators organisms as Artemia sp. and L. sativa were found and, in addition, they have non-significant result in terms of DNA cleavage activity. Zeolites have advantage of releasing slowly the metals loaded and this characteristic can to be considered promising as potential antimicrobial materials in concentrations safe for use.

Open access
Multiphase extraction of ephedrine from Pinellia ternata using bionic liquid-modified polymer

Abstract

Multiphase extraction (MPE) was applied as a developed, convenient and efficient method in separation of ephedrine from Pinellia ternata. Firstly, in order to increase the adsorption efficiency, bionic liquid-modified polymer was created. Comparing the effects of all sorbents under variables conditions, the highest amount of 5.8 mg/g can be adsorbed on dual imidazole ionic liquid modified polymer (Im-Im-Poly) in methanol/water (70:30, v/v) solution at 25°C within 30.0 min. Then the Im-Im-Poly was applied in MPE, after 7 times repetition of extraction, around 1.0 mg/g of ephedrine from Pinellia ternata was detected. After washing by water, ethanol and methanol, and elution by methanol/acetic acid (99.0:1.0, v/v), ephedrine was successfully separated.

Open access
Recycling of Cerium and Lanthanum from Glass Polishing Sludge

Abstract

To examine the efficiency of La and Ce recycling processes from the sludge, two major methods were used, namely leaching and precipitation. The findings suggest that 12% of La and 24.2% of Ce were contained in the sludge. The sludge was leached in an optimum condition of 6N HCl at a temperature of 70°C with a 3g/50 mL solid/liquid ratio for 3 h to obtain a 100% leaching recovery of La and Ce. After pH adjustment of the obtained La and Ce optimum leaching solution to 6 with NH4OH and a simultaneous addition of H2O2 in a ratio of 1:1, Ce precipitated out with 65.9% recovery. On the other hand, La was not precipitated. The results obtained in this study reveal that leaching and pH adjustment method could be used to recover the valuable REE of La and Ce from glass polishing sludge in order to reach the goals of resource recycling.

Open access
Treatment of vinasse liquid from sugarcane industry using electro-coagulation/flocculation followed by ultra filtration

Abstract

In this present work, vinasse, a by-product of sugarcane industry, was examined using combined treatment methods to purify it. Electrocoagulation/flocculation, ultrafiltration were applied as pre-treatment and post-treatment, respectively. The effectiveness of combined process was evaluated based on colour, turbidity and chemical oxygen demand (COD) removal. The efficiency of electrochemical reactor was investigated according to process variables such as retention time, electrode distance and electrolyte dose. From the results, the price to treat unit vinasse is found to be 2.5 US$/m3 under optimum conditions. FT-IR analysis of sludge obtained shows the results of electrocoagulation process. Ultrafiltration as post treatment experiments showed the enhanced removal efficiency of colour (91%), turbidity (88%) and COD (85%). The results showed that electrocoagulation followed by ultrafiltration is a suitable combined technique to reduce the colour, turbidity and COD from vinasse liquid.

Open access
Anticancer activity of some new series of 2-(substituted)amino-1,3-thiazole derivatives

Abstract

A series of thiazole derivatives were synthesized and structurally elucidated by IR, 1H NMR, 13C NMR, mass and elemental analyses. The prepared compounds were screened for their cytotoxic activity against Leukemia HL-60 cell line. Compound 4b was considered as the most promising antitumor candidate among the tested compounds. Mechanism of action of compound 4b evaluated by flow cytometric assay revealed cell cycle arrest at G2/M phase and pre-G1 apoptosis. The ratio of apoptosis was also determined. Moreover, compound 4b increased the concentration of caspase 3 by 4 fold more than untreated control.

Open access
Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies

Abstract

Five divalent transition metals Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes have been synthesized using 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid (H3L) Schiff base as a ligand derived from the condensation reaction between 4-amino-3-hydroxynaphthalene-1-sulfonic acid and 2-hydroxy-1-naphthalde-hyde. The synthesized complexes were characterized using microanalytical, conductivity, FTIR, electronic, magnetic, ESR, thermal, and SEM studies. The microanalytical values revealed that the metal-to-ligand stoichiometry is 1:1 with molecular formula [M2+(NaL)(H2O)x].nH2O (where x = 3 for all metal ions except of Zn(II) equal x = 1; n = 4, 10, 7, 4, and 6 for Cu(II), Co(II), Ni(II), Mn(II) and Zn(II), respectively). The molar conductivity result indicates that all these complexes are neutral in nature with non-electrolytic behavior. Dependently on the magnetic, electronic, and ESR spectral data, octahedral geometry is proposed for all the complexes except to zinc(II) complex is tetrahedral. Thermal assignments of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. SEM micrographs of the synthesized complexes have a different surface morphologies. The antimicrobial activity data show that metal complexes are more potent than the parent ligand.

Open access
Design and simulation of high purity biodiesel reactive distillation process

Abstract

Biodiesel is a promising energy substitute of fossil fuels since it is produced from renewable and biodegradable sources. In the present work, reactive distillation (RD) process is designed and simulated using Aspen Plus process simulator to produce biodiesel of high purity through esterification reaction. The simultaneous reaction and separation in same unit enhances the biodiesel yield and composition in RD process. Two flowsheets are proposed in present work. In the first flowsheet, the unreacted methanol is recycled back to reactive distillation column. Biodiesel with 99.5 mol% purity is obtained in product stream while the byproduct stream comprises 95.2 mol% water, which has to be treated further. In the second flowsheet, a part of methanol recycle is split and purged. In this case, the biodiesel composition in product stream is 99.7 mol% whereas water composition is 99.9 mol% in byproduct stream, which can be reused for other process without treatment.

Open access
Determination of Fe2+/Fe3+ mole ratio based on the change of precursor lattice parameters of wustite based iron catalysts for the ammonia synthesis

Abstract

In the presented article, oxide forms of iron catalysts with the wustite structure and with a R = Fe2+/Fe3+ molar ratio in the range from 3.78 to 8.16 were investigated. The chemical composition of the tested catalyst precursors was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The X-ray diffraction (XRD) technique was used to determine the phase composition and location of reflections characteristic of the Fe1−xO phase. The molar ratio of iron ions R = Fe2+/Fe3+ was determined by manganometric titration. The distribution of promoters in the structure of iron catalyst precursors with different R = Fe2+/Fe3+ ratio was determined by a selective etching method. The dependence of the lattice parameter ao value in the crystal structure Fe1−xO on the molar ratio R = Fe2+/Fe3+ was determined. On the basis of the determined dependence, R can easily be calculated in catalyst precursors of the wustite structure.

Open access
Effect of extraction method on the antioxidative activity of ground elder (Aegopodium podagraria L.)

Abstract

In this work the studies on the antioxidative properties of extracts from various morphotic parts of the ground elder (leaves, rhizomes, seeds and flowers) were presented. Moreover, the effect of different extraction methods (ultrasonic assisted extractions, extraction in a Soxhlet apparatus, extraction at the boiling point of the solvent used), solvent and its amount, and extraction time on the antioxidative properties of the obtained extracts were tested. The studies showed that all parts of ground elder can show radical scavenging activity, and it depends mainly on the method of extraction and extraction time. But the most beneficial is ultrasonic assisted extraction which used lower amount of solvent (ethanol). In case of all parts of the ground elder (leaves, rhizomes, seeds and flowers) it allows to obtain very high values of the antioxidant capacity (above 90%) for very short extraction time amounted to 20–40 minutes.

Open access
Enzymatic bioconversion of feather waste with keratinases of Bacillus cereus PCM 2849

Abstract

Enzymatic preparation from culture of keratinolytic Bacillus cereus PCM 2849 was applied for hydrolysis of whole chicken feathers, after sulphitolytic pretreatment. This process was optimized using a three-factor Box-Behnken design, where the effect of substrate concentration, sulphite concentration during pretreatment and reaction temperature was evaluated on the release of amino acids. Obtained results revealed the highest impact of reaction temperature, followed by substrate content and sulphite during pretreatment. Optimal process conditions were established, i.e. temperature 44.4°C, feathers 4.7% and treatment with 25.3 mM sulphite. Amino acid composition of the obtained hydrolysate was analyzed. Glutamic acid (9.21 g·kg−1) and proline were dominant, however significant amount of branched-chain amino acids was also observed. The FTIR analysis of residual substrate revealed the cleavage of disulphide bonds in keratin through the presence of thioester residues. The absence of reduced cysteine residues was confirmed, along with minor changes in proportions of keratin substructures.

Open access