Browse

1 - 10 of 64 items :

  • Geosciences x
  • Remote Sensing x
Clear All

Abstract

This study presents the estimated remaining quantity of overburden material (topsoil, completely to highly weathered rock) and remaining geological reserve at Sibanyis Quarry, Kuching after the quarry has been operated for years. Desktop study including literature search was carried out prior field investigation. Three boreholes together with latest topographical and detail survey was conducted to obtain the latest data at Sibanyis Quarry, Kuching. Based on this Geological Reconciliation Study, the estimated total remaining geological rock reserve is 40,022,767 metric tons, and the weathered rock and top soil are 2,159,688 BCM and 1,247,697 BCM respectively. The assumptions that are taken into consideration are top soil thickness of 11m, weathered rock thickness of 15m and rock density of 2.64 mt/m3.

Abstract

Integrated well dataset and seismics delineated the PGS field onshore Niger Delta for reservoir identification. Gamma ray, resistivity, Neutron and density Logs identified four lithologies: sandstone, shaly sandstone, shaly sand and shale. They consist of sand-shale intercalation with the traces of shale sometimes found within the sand Formation. Petrophysical parameters of the reservoirs showed varying degree of lower density, low gamma ray, high porosity and resistivity response with prolific hydrocarbon reservoir G due to its shale volume and the clean sand mapped as a probable hydrocarbon reservoir. 3D seismic data located both seismic scale and sub-seismic scale structural and stratigraphic elements. Risk reduction in dry hole drilling due fault missing in conventional seismic attribute analysis and interpretation, have to be integrated into the Oil companies standard practice.

Abstract

The Gwal mélange is mapped on a large scale and is divided into the lithological units such as ultramafic, mafic, volcanic, volcanoclastic rocks, pelagic sediments and ophicarbonates. Petrographically, the mapped rocks are classified as harzburgite, dunite, wehrlite, serpentinite, gabbro, basalt, and andesite. These rocks are quite deformed and altered into the secondary minerals. Harzburgite is a layered mantle peridotite consists of olivine and orthopyroxene while dunite lacks the presence of any pyroxene. Serpentinite is the secondary product after peridotite is the product of post magmatic stages. The mesh structure is usually observed when olivine is completely altered to serpentine. The volcanic rocks are structurally sheeted and pillow type while the volcanoclastic rocks are essentially hyaloclastites associated with pelagic sediments. The Ophicarbonate is composed of serpentinite fragments and carbonate minerals, most probably calcite. Minor to trace amounts of opaque minerals are also present in association with major components. The gabbros may be a fragment of the main crustal rocks and have been formed in a magma chamber by fraction crystallization. The origin of ophicarbonate may be due to gas seeps originated by mantle or as the surficial process where ultramafic rocks and carbonates are mixed through processes of gravity, tectonic crushing and sedimentary reworking. The Gwal mélange may the southern extension of Bagh Complex found beneath the Muslim Bagh Ophiolite. The mantle peridotite of the mélange is much like that of the Khanozai peridotite and may represent its detached blocks. Volcanic and volcanoclastic rocks may be the representatives of the uppermost part of ophiolite crust which might have trimmed off from subducting slab and are, now, part of the Gwal accretionary wedge. The mélange may have tectonically emplacement over the Indian platform sediments along with overlying the ophiolite sheet during the Late Cretaceous.

Abstract

The present research describes a method of combining geostatistical analysis with geophysical inversion of electrical resistivity data conducted in Pakhli Plain, northwestern Himalayas, Pakistan. The raw data has been collected from the Technical Report VII-I on Ground Water Resources in Pakhli Plain, Mansehra District. Subsequently, the data has been deciphered and broadened from one dimensional resistivity data into a 2D model that can be entirely visualized and deduced in a spatial sense. Interpretation and calibration of the electrical resistivity curves with the lithologies and geophysical logs of boreholes suggests possible identification of distinctive sedimentary accumulations occurring within the Pakhli Plain. The 2D and 3D gridding and visualization is imperative to map the extents of the alluvial deposits within the Pakhli Plain formed during the periods of extreme tectonic activity. The coarser sediments are associated with lower levels of resistivity as measured in the electrical surveys, whereas the finer sediments exhibit characteristically lower resistivities. Therefore, the zones of low and high resistivity values are indicative of particles associated with coarser and finer sediments, respectively. It has been mentioned that the Pakhli Plain has remained a lacustrine zone during some time in the geological past as indicated by low resistivities representing finer sediments in the middle of the Plain. Consequently, the overall transmissivity of the sediments is low, which imply poor conditions for commercial groundwater production in the Pakhli Plain. Moreover, high resistivity zones of coarse material could be further investigated for groundwater potential areas. In particular, the prime objectives of the present study include 3D modeling of underground resistivity and its exploration in terms of groundwater potential on the basis of distribution of low resistivity zones.

Abstract

The IGRF filtered Aeromagnetic data over Iwo, southwestern part of Nigeria within the basement complex was subjected to reduction to magnetic equator filtering, residual filtering, upward and downward continuation filtering, automatic gain control filtering, tilt angle derivative, second vertical derivative, analytical signal and Euler deconvolution. This reveals the geologic information such as structural trend. Based on the result of the total magnetic intensity map, reduction to equator map, analytical signal map and residual magnetic intensity map, it can be concluded that; The rocks in the study area have a trend of approximately northeast-southwest direction as seen on the upward continuation map. Most of the delineated lineaments found within the study area strike mostly in NNE-SSW, NE-SW and NW-SE with minor trend of E-W and ENE-WSW direction. Structural lineament orientation suggested that they were products of Pan-African orogeny (NE-SW, NW-SE and NNE-SSW trends) and pre-Pan-African orogeny (NNW-SSE and E-W trend). The interpretation of the aeromagnetic dataset gave an insight into the regional geology and structural trends of the area.

Abstract

The underground city beneath the Nevşehir Castle located in the middle of Cappadocia region in Turkey with approximately cone shape is investigated by jointly utilizing the modern geophysical techniques of seismic surface waves and electrical resistivity. The systematic void structure under the Nevşehir Castle of Cappadocia, which is known to have widespread underground cities, is studied by the use of 33 separate two-dimensional profiles ~4-km long where electrical resistivities and seismic surface waves are concurrently measured. Seismic surface wave measurements are inverted to establish the shear-wave velocity distribution while resistivity measurements are inverted to resolve the resistivity distribution. Several high-resistivity anomalies with a depth range 8-20 m point to a systematic void structure beneath the Nevşehir Castle. We were able to effectively isolate the void structure from the embedding structure since the currently employed resistivity instrument has provided us high resolution quality measurements. Associated with the high resistivity anomalies there exist low-velocity depth zones acquired from the surface wave inversions also pointing to a systematic void structure where three-dimensional visualization techniques are used to show the extension of the void structure under the studied area.

Abstract

The early Cambrian Abbottabad Formation mainly comprises of dolomite, sandstone, shale and conglomerates at Khote-di-Qabar section, Hazara region, Pakistan. The formation makes lower contact with Hazara Formation and upper contact with Hazira Formation. The formation is comprehensively studied during the field and lab work to interpret its provenance. Five distinguishable sedimentary units including 1) Tanaki boulder bed; 2) Sanghargali siltstone/shale; 3) Mohammdagali Dolomite/quartzite; 4) Mirpur sandstone; 5) Sirban dolomite can be identified in the field that indicate variable depositional strata of the formation under various depositional setting. Additionally, petrographic analysis of Sanghargali siltstone/shale unit and Mirpur sandstone unit of the formation indicate the main lithologies of these units are litharenite and sublitharenite respectively. Moreover, the provenance of these sandstone units of the formation most probably belong to Aravali and Malani Ranges located in the South of the study area.

Abstract

West Wadi El-Rayan is located in the Western Desert at about 140 km SE of Cairo. Also, it lies between Gindi basin to the east and Abu Gharadig basin to the west. In order to construct a 3D structural model and to delineate the subsurface structure styles of the area, seismic structural interpretation and structural restoration are used. The structural geometry within the area is inverted half-graben, since the area was controlled by reactivation of older faults. The magnitude of the inversion-related shortening in the study area was estimated and was suggested to be strong. The result of the strong inversion magnitude occurred toward northeast of the study area can be concluded that, the area suffered shortening and part of the Jurassic / Early Cretaceous normal faults are reactivated as reverse faults. Also the cap, the main reservoirs and the source rock sections are brought to the surface and thus breached, as well any previous mature source rock becoming non-generative where the dry wells are located. However, any less severe inversion structure in this case where producing wells are located that remain buried and will have a better chance or preserving the structure geometry and therefore top and lateral seal.

Abstract

Geophysical well logs were used to delineate the stratigraphic units and system tracks in the XYZ Field of the Niger Delta. The gross percentages for sand levels range from 93-96% in the shallow levels to 60-66% in the deeper levels. Porosity values ranged between 27% at shallower sections and 9% at deeper depths. Six depositional sequences were identified and categorized into their associated system tracts. Porosity decreases with depth in normal compacted formation for both sandstone and shale units. Surface porosity for sandstone is 42%, and for shale it is 38.7% from extrapolation of sub-surface porosity values to the surface. The depth to the base of Benin Formation is highly variable ranging between 1300 and 2600m. This study reveals the possibility to correlate sand levels over long distances which enables inferring porosity values laterally. The knowledge of the existent stratigraphic units, the Benin, Agbada and Akata Formations and their petrophysical parameters such as porosity, lateral continuity of the sands and shales, the variation of the net-to-gross of sands with depth, enables the reservoir engineer to develop a plan for the number and location of the wells to be drilled into the reservoir, the rates of production that can be sustained for optimum recovery. The reservoir engineer can also estimate the productivity and ultimate recovery (reserves) using the results on this work.