Browse

1 - 10 of 52 items :

  • Materials Sciences x
  • Engineering x
  • Electrical Engineering x
Clear All
Acceptability testing and development of a novel wood lathe balanced rest

Abstract

The utility model discussed in this study discloses a wood lathe balancing rest that is advantageous in terms of design, ergonomics, and functions. The study aimed to fabricate a safety device for the wood lathe machine to prevent kickback and slow down vibration from the workpiece attached to the lathe machine to avoid the vibration of the workpiece and to avoid an accident to the operator and to avoid damage of the materials. The utility model is planned not exclusively to spare time yet also for the wellbeing of the laborers amid activity. It is designed to hold the workpiece when turning and control the vibration, it can be mounted on the bed of the lathe near the center of the turning planetary.

Open access
Bending of an annular three-layer circular plate

Abstract

The main objective of this work is the numerical analysis of the strength and stiffness of an annular three-layer circular plate with variable mechanical properties of the core. The plates are subjected to bending. Numerical analysis of the deflection phenomenon is carried out under different support conditions of the plate. Furthermore, the influence of the material properties of the core (linear and non-linear model) on the shear stresses and deflecions is also investigated.

Open access
Development of a computational model of a lightweight vertical lathe with the use of superelements

Abstract

This article presents a process of developing a computational model of a light construction vertical lathe. The model is made using the finite elements method. Due to the complexity of the machine tool and the optimization of the computation time superelements have been used in the model. The application of this method has reduced the computation time allowing the analysis of many variants of the mutual position of the machine components. The results of the analyzes led to the indication of weak links of the machine tool. After the improvement of the machine tool construction the movement of the tool tip and the workpiece was much smaller.

Open access
Effect of FSW welding parameters on the tensile strength of aluminum alloys

Abstract

The friction stir welding process is an innovative technique for joining metals using plasticity, without presenting the fusion. It was first applied to aluminum alloys, for example copper, steel alloys, polymers and others. In this work the effects of the rotational speed, the speed of travel and the axial force of the tool were grouped in a mathematical model to quantify their influences on the weld seam. In this context and with of the experimental tests, the desired objective through this study is to describe the tensile strength of the cord resulting from this welding operation, for the qualification of this type of parts with an optimum adapted to a given application.

Open access
Geometrical structure of surface after turning of 316L stainless steel in laser assisted conditions

Abstract

The effects of turning 316L steel in a laser assisted machining are presented in this paper. The properties of 316L stainless steel are also shown in this article. In order to show correlation between the technological parameters, microgeometry of cutting tools and geometrical structure of surface, turning of material in grade 316L supported by laser has been executed. In addition, optical examination of cutting inserts has been performed and geometrical measurements of machined surfaces have been taken. The results of researches on the effects of the technological parameters and cutting tool’s microgeometry on the geometrical structure of the 316L steel surface after turning in LAM conditions are described.

Open access
Influence of heat treatment on the structure and properties of polyamide 6/ halloysite nanocomposites

Abstract

The nanocomposites of polyamide 6 (PA6) with halloysite nanotubes (HNT) were prepared by extrusion using co-rotating twin-screw extruder and then the standard test specimens were injected using a screw injection moulding machine. The content of HNT in the nanocomposites was 5 or 10 weight percent. The heat treatment of unmodified PA6 and nanocomposites was carried out in silicone oil in temp. 150±2°C. The samples were annealed for 3 hours and then cooled at a rate of 4 K/min. Differential scanning calorimetry (DSC) causes annealing to increase the crystallinity of the polyamide matrix. After an annealing treatment a nanocomposite with better mechanical properties was obtained. Halloysite nanotubes in polyamide matrix play the role of a nucleating agent.

Open access
Kinematic model of multiple trailers on a tractor system for production logistics applications

Abstract

This paper demonstrates kinematic analysis of multiple trailers on a tractor system for production logistics. The analysis concerned three different steering systems of the trailers: virtual clutch and drawbar system, conventional clutch and drawbar system, double Ackermann steering system. Designed kinematic models contain various variants of paths: turning at a constant value of the steering angle, changing the steering angle as a result of an approaching collision. Each of these variants also included driving in a straight line after a 90° turn. The validation of the developed kinematic model was done by using a real logistic train, which path was registered via aerial drone. For each of the developed kinematic models, a visualization of drive through the 90° turn was created.

Open access
Laser heat treatment of nickel-based alloys – a review

Abstract

In this paper researches which focus on laser heat treatment of nickel-based alloys are reviewed. Studies published from 1970s until today are taken into consideration. Publications which focus on influence of laser thermal processing on surface layer condition both on solid materials and pre-deposited coatings are described. Laser technologies in which additional materials are delivered during the process are not considered. In order to focus on studies investigating microstructural changes resulting mainly from material remelting, laser shock processing is also disregarded.

Open access
Measurement strategy as a determinant of the measurement uncertainty of an optical scanner

Abstract

The subject of the article is an attempt to determine the impact of the applied measurement strategy on the accuracy of the measurement result. This problem is particularly crucial when measuring large objects. In these cases, it is not always possible to provide ideal conditions for the submission of particular scans. It is necessary to adjust the strategy to specific imposed conditions defined by the geometry of the object and to the time frame of the measurement itself.

With regard to the above, an attempt was made to carry out a series of accuracy studies testing the structural light scanner while measuring elements of overall dimensions greater than the measuring capacity of the scanner. At the same time, various potential measuring strategies were simulated in practical applications. Our studies were conducted using a pre-designed test template with a defined distribution pattern of reference points and geometrical elements. Moreover, in order to make an in-depth investigation of the issue, some trials were undertaken with the use of limiting parameters. That means the scanner had both an excess and shortage of information required for a correct assembly of scans. Those scopes were taken into consideration in the study in order to use the acquired knowledge in practical measuring applications. Furthermore, conclusions from the conducted studies indicate peaks and troughs of respective measuring strategies with special care for determining relationships among the used strategies and the measuring accuracy parameters.

Open access
On the analysis of chip shaping after finishing turning of Ti6Al4V titanium alloy under dry, wet and MQL conditions

Abstract

The shape and type of chip give general information about the cutting process. This paper presents the results of testing the shape and type of chips of Ti6Al4V titanium alloy after it finishes turning. The process was carried out under dry, wet and MQL (Minimum Quantity Lubrication) conditions at variable cutting speeds and feed rates and a constant depth of cutting. For planning the tests, the PSI (Parameter Space Investigation) method was used, which allows the experiment to be carried out while minimizing the number of experience points. It was found that the cutting speed and feed affect the type and shape of the chip, and clear differences were observed between dry and wet cooling conditions, and MQL conditions. During turning, the intensity of the cutting speed and feed influence on the chip compression ratio was changed. It was similar for dry and wet cooling conditions but smaller for MQL conditions. The purpose of this research is to analyze the chip shaping when Ti6Al4V titanium alloy finishes turning under dry, wet and MQL cooling conditions.

Open access