Browse

You are looking at 1 - 10 of 991 items for :

  • Materials Sciences x
  • Functional and Smart Materials x
Clear All
Open access

Rajeev Arora, Subhash Chand and Pankaj Sharma

Abstract

A conducting nanocomposite film of 60 nm nano-SnO2-polyaniline (PANI) and polyvinyl alcohol (PVA) has been synthesized and analyzed in terms of AC conductivity and dielectric behavior. The conducting polymer nanocomposite of PANI/60 nm (SnO2) and polyvinyl alcohol (PVA) has been prepared via in situ polymerization technique. The morphology of the nanocomposite film has been studied by SEM. The film has been characterized in terms of DC conductivity. The dielectric behavior and AC conductivity of the nanocomposite film have been investigated in the frequency range of 2 Hz to 90 KHz. The film has high dielectric constant which may be correlated with polarization. It has been observed that both dielectric loss and dielectric constant decrease with an increase in frequency.

Open access

K. Ramarao, B. Rajesh Babu, B. Kishore Babu, V. Veeraiah, K. Rajasekhar, B. Ranjith Kumar and B. Swarna Latha

Abstract

In this work, Ni substituted magnesium spinel ferrites having general formula Mg1–xNixFe2O4 (where x = 0.0, 0.1, 0.15, 0.2, 0.25 and 0.3) were synthesized by standard solid state reaction method. All the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), DC resistivity measurements. X-ray diffraction analysis confirmed the single spinel phase. The lattice constant decreased with increasing Ni content due to the difference in the ionic radii of Mg2 + and Ni2 + ions. The FT-IR spectra reveled two prominent frequency bands in the wave number range of 400 cm−1 to 600 cm−1, which confirmed the cubic spinel structure of obtained compound and completion of chemical reaction. Magnetic studies revealed that the saturation magnetization increased with the substitution of Ni. The increase in magnetization was explained on the basis of distribution of magnetic and non-magnetic cations among A and B sites of the spinel lattice. A significant influence of cation distribution on DC electrical resistivity and activation energy was observed.

Open access

Nurcan Akduran

Abstract

The effect of MgB2 addition on the Eu1Ba2Cu3O7 (EBCO) ceramics was systematically studied. Series of Eu1Ba2Cu3O7 + x(MgB2) samples (x = 0 wt.%, 0.05 wt.%, 0.1 wt.%, 1 wt.%, 3 wt.%) were prepared using traditional solid state method. X-ray powder diffraction measurements were used for phase identification. The lattice parameters and orthorombicity decreased with MgB2 addition. A standard four point measurement method was used to determine transition temperatures Tc of superconducting samples. Tc values of the samples were decreasing with MgB2 concentration. TGA results indicate thermal stability of doped samples.

Open access

Zohra Nazir Kayani, Mahek Zaheen Butt, Saira Riaz and Shahzad Naseem

Abstract

NiO nanoparticles were fabricated by sol-gel route using ammonium hydroxide and nickel nitrate as precursors. The NiO nanoparticles were calcinated at 400 °C and 1000 °C. The nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), thermogravimetry analysis/differential thermal analysis (TGA/DTA). The structural properties were evaluated by X-ray diffraction (XRD). XRD confirmed the formation of well-crystallized and high purity NiO phase. The XRD showed that the peaks were sharpened and the crystallite size increased as the calcination temperature increased. The average crystallite size ranged from 12 nm to 20 nm, when calcined at temperatures 400 °C and 1000 °C, respectively. Fourier transform infrared spectroscopy (FT-IR) revealed the chemical composition and confirmed the formation of NiO nanoparticles. The nanoparticles showed paramagnetic behavior.

Open access

Ismet Kaya, Feyza Kolcu, Sabriye Satilmi and Zeynep Yazicioglu

Abstract

A series of polyimines, bearing phenolic groups were successfully synthesized in aqueous alkaline solution via chemical oxidative polycondensation. Polymeric Schiff bases were synthesized by condensation of 2,4-dihydroxybenzaldehyde and 3-hydroxy-4-metoxybenzaldehyde with 2-aminophenol and 3-aminophenol. The molecular structures of the synthesized Schiff bases and their corresponding polymers were studied by FT-IR, UV-Vis, 1H-NMR and 13C-NMR spectroscopic methods. Thermal stability of the imine polymers was evidenced by their initial degradation temperatures found in the range of 170 °C to 271 °C without any sign of melting. The results of UV-Vis and cyclic voltammetry (CV) measurements were coherent with the optical Egand the electrochemical E'gband gaps of the polyimines which were lower than those of their corresponding Schiff bases. Fluorescence spectral analysis of P4 (Schiff base polymer P4 derived from 3-aminophenol and 3-hydroxy-4-methoxybenzaldehyde) revealed a bicolor emission with blue and green light. Electrical conductivity of the synthesized imine polymers was measured by four-point probe technique. P4 showed the highest electrical conductivity as a result of iodine vapor contact time. Morphology characterization of the synthesized polyimines was carried out using a scanning electron microscope SEM at different magnifications. The study revealed that P4 is a promising candidate for both blue and green light emitters which could be used in the production of photovoltaic materials and solar cells.

Open access

M. Suresh Kumar, K. Rajesh, G. V. Vijayaraghavan and S. Krishnan

Abstract

Good quality diglycine perchlorate (DGPCL) single crystals were grown by slow evaporation solution growth method using the combination of glycine and perchloric acid in the ratio of 2:1. Single crystal X-ray diffraction and mechanical characterization of the grown single crystals of diglycine perchlorate were analyzed in this article. Lattice parameters, space group and crytal system were found from single crystal X-ray diffraction analysis. All the cell parameters and space group are in a good agreement with the reported values. Mechanical properties, such as Vicker’s microhardness number, work hardening index, standard hardness value, yield strength, fracture toughness, brittleness index and elastic stiffness constant values, were determined using Vicker’s microhardness tester.

Open access

P. Venkateswara Rao, G. Naga Raju, P. Syam Prasad, T. Satyanarayana, L. Srinivasa Rao, F. Goumeidane, M. Iezid, W. Marltan, G. Sahaya Baskaran and N. Veeraiah

Abstract

PbO-ZnF2-P2O5glasses doped with different mol% (0.1 to 1.0) of MoO3 have been prepared. Dielectric properties ε’(ω), tanδ, σAC, of the synthesized samples were calculated from frequency measurements versus temperature. Space charge polarization was used to analyze the temperature and frequency dispersions of dielectric constant ε’(ω) and dielectric loss tanδ. Quantum mechanical tunneling model was employed to explain the origin of AC conductivity. The AC conductivity exhibited an increasing trend with increasing concentration of MoO3(up to 0.2 mol%) but the activation energy for conduction decreased. The plots of AC conductivity revealed that the relaxation dynamics depends on MoO3dopant concentration.

Open access

Imran Khan, S. Kalainathan, M.I. Baig, Mohd Shkir, S. Alfaify, H.A. Ghramh and Mohd Anis

Abstract

Present investigation has been started to perform the comparative study of pure and glycine doped KH2PO4 (KDP) single crystals grown by most commercial slow solvent evaporation technique. The grown crystals were subjected to single crystal X-ray diffraction analysis to determine their structural parameters. The linear optical studies of pure and glycine doped KDP crystal have been undertaken within 200 nm to 1100 nm wavelength range by means of UV-Vis studies. The enhancement in second harmonic generation (SHG) efficiency of glycine doped KDP crystal has been determined using a standard Kurtz-Perry powder test. The dielectric measurements have been carried out to explore the impact of glycine dopant on dielectric constant and dielectric loss of KDP crystal. The surface growth habitat and etch pit density of glycine doped KDP crystal have been evaluated using the results of microscopic etching studies. In light of obtained results the suitability of glycine doped KDP crystal for device applications has been discussed.

Open access

G.W. Strzelecki, K. Nowakowska-Langier, R. Chodun, S. Okrasa, B. Wicher and K. Zdunek

Abstract

The research on the influence of modulation frequency on the properties of films synthesized using a unique pulsed power supply combined with a standard unbalanced circular magnetron was conducted in the process of pulsed magnetron sputtering (PMS). It was shown that by using different levels of modulation, the composition of plasma (measured by optical emission spectroscopy, OES) as well as film growth rate and morphology (observed with scanning electron microscope, SEM), can be changed. The impact of modulation is related to the used materials and gases and can vary significantly. It was concluded that modulation frequency can greatly influence the synthesis of materials and can be used as an additional parameter in PMS. Specific relations between modulation frequency and synthesized material require further investigation.

Open access

Tadeusz Groń, Magdalena Piątkowska, Elżbieta Tomaszewicz, Bogdan Sawicki, Piotr Urbanowicz and Henryk Duda

Abstract

Polycrystalline samples of new scheelite-type tungstates, Pb13xxPr2xWO4 with 0.0098 ≤ x ≤ 0.20, where □ denotes cationic vacancies have been successfully prepared by a high-temperature solid-state reaction method using Pr2(WO4)3 and PbWO4as the starting reactants. The influence of the Pr3+ substitution in the scheelite framework on the structure and optical properties of prepared new ceramic materials has been examined using powder X-ray diffraction method (XRD) and UV-Vis-NIR spectroscopy. The results of dielectric studies of Pb13xxPr2xWO4 samples showed both low values of dielectric constant (below 14) and loss tangent (below 0.2). The electrical conductivity and thermoelectric power measurements revealed a low conductivity (~2 × 10−9 S/m) and the sign change of thermoelectric power around the temperature of 366 K suggesting the p-n transition. These results are discussed in the context of vacancy, acceptor and donor levels as well as the Maxwell-Wagner model.