Browse

1 - 10 of 3,086 items :

  • Materials Sciences x
Clear All
Modernizing and increasing performance of Building Services
enviBUILD
OPEN ACCESS
Buildings and Environment

Abstract

NASA is planning to launch robotic landers to the Moon as part of the Artemis lunar program. We have proposed sending a greenhouse housed in a 1U CubeSat as part of one of these robotic missions. A major issue with these small landers is the limited power resources that do not allow for a narrow temperature range that we had on previous spaceflight missions with plants. Thus, the goal of this project was to extend this temperature range, allowing for greater flexibility in terms of hardware development for growing plants on the Moon. Our working hypothesis was that a mixture of ecotypes of Arabidopsis thaliana from colder and warmer climates would allow us to have successful growth of seedlings. However, our results did not support this hypothesis as a single genotype, Columbia (Col-0), had the best seed germination, growth, and development at the widest temperature range (11–25 °C). Based on results to date, we plan on using the Columbia ecotype, which will allow engineers greater flexibility in designing a thermal system. We plan to establish the parameters of growing plants in the lunar environment, and this goal is important for using plants in a bioregenerative life support system needed for human exploration on the Moon.

Abstract

Increasingly high demands on environmental protection are intensifying the development of sustainable construction. Ventilated facades can provide an energy-efficient alternative to standard facades, that is, external thermal insulation composite systems (ETICS). The article compares standard facades, which was a reference, to ventilated facades in two variants: closed joints and open joints. The comparison was made by means of numerical simulations of computational fluid dynamic (CFD), under conditions of high outside temperature and high sunshine. The results showed great benefits of using ventilated facades in such external climate conditions. It was also observed that the selection of the variant of ventilated facade in the system of close or open joints has minimal influence on thermal efficiency of the whole partition.

Abstract

During carbon steel manufacturing, large amounts of electric arc furnace (EAF) slag are generated. EAF slag, if properly treated and processed into aggregate, is an alternative source of high-quality material, which can substitute the use of natural aggregates in most demanding applications in the construction sector, mostly for wearing asphalt courses. In this screening process of high-quality aggregates, a side material with grain size 0/32 mm is also produced, which can be used as an aggregate for unbound layers in road construction. In this study, the environmental impacts of slag aggregate (fraction 0/32 mm) were evaluated in mixed natural/slag aggregates. Different mixtures of natural/slag aggregates were prepared from aged (28 days) and fresh slag, and their environmental impacts were evaluated using leaching tests. It was shown that among the elements, chromium (Cr) was leached from some mixed aggregates in quantities that exceeded the criterion for inert waste. The data from the present investigation revealed that mixed aggregates, prepared from aged slag (fraction 0/32 mm) and natural stone in the ratio 10/90, are environmentally acceptable and can be safely used in unbound materials for road construction.

Abstract

Nickel-cobalt ferrite spinels are ferrimagnetic ceramic materials that possess a great potential for application in highdensity magnetic media, recording, color imaging, ferrofluids, and high-frequency devices. A change of their structure from micro- to nano- improves their properties drastically, therefore many methods have been investigated to fabricate nanopowder of these spinels. Gel combustion method is one of them. In this research, Ni0.5Co0.5Fe2O4 nanoparticles were fabricated via gel combustion method using metallic nitrates as an oxidant and citric acid, glycine and urea as fuels and the effects of fuel type on the reaction behavior, structure and morphology of Ni0.5Co0.5Fe2O4 nanoparticles were investigated. The reaction behavior was studied by thermal analysis method (TGA-DTA), crystallite size of powders was characterized by X-ray diffraction (XRD) and their morphology was studied by FE-SEM. The results revealed that the reaction was initiated in urea, glycine and citric at 219 °C, 197 °C, 212 °C, respectively. Samples fabricated from glycine and citric acid had a pure spinel structure but the others fabricated with urea fuel had iron oxide impurity. The crystallite size of nickel cobalt ferrite nanoparticles was in the range of 58 nm to 64 nm and the nanoparticles were agglomerated.

Abstract

In this work, copper doped nickel oxide as the thin films have been elaborated by a spin coating method, the nickel chloride hexahydrate (0.8M) and copper (II) chloride dehydrate (Cu/Ni = 0, 2.15, 4.3, 8.6 and 12.9 At.%) were used to prepare the Cu doped NiO thin films. The Cu doped NiO thin films were heated at a crystallization temperature of 600 °C with 2 h. The obtained thin films by spin coater method have a film thickness in the order of 400 nm. The prepared Cu doped NiO thin films have a polycrystalline with cubic structure (200) peak was observed. The optical property shows that the prepared thin films have a transmittance of about 70 %. The Cu doped NiO thin films have minimum bandgap energy is 3.85 eV at 12.9 at.%, the thin film deposited at 8.6 at.% has the highest value of Urbach energy is 425 meV. The Cu doped NiO thin films have a high electrical conductivity of 8.6 at% it is 7 (Ω.cm)−1. The prepared Cu doped NiO thin film was suitable for gas sensing applications due to the existing phase and higher electrical conductivity.