Browse

You are looking at 1 - 10 of 352 items for :

  • Biomedical Engineering x
Clear All
Open access

Martin Koller

Abstract

The benefit of biodegradable “green plastics” over established synthetic plastics from petro-chemistry, namely their complete degradation and safe disposal, makes them attractive for use in various fields, including agriculture, food packaging, and the biomedical and pharmaceutical sector. In this context, microbial polyhydroxyalkanoates (PHA) are auspicious biodegradable plastic-like polyesters that are considered to exert less environmental burden if compared to polymers derived from fossil resources.

The question of environmental and economic superiority of bio-plastics has inspired innumerable scientists during the last decades. As a matter of fact, bio-plastics like PHA have inherent economic drawbacks compared to plastics from fossil resources; they typically have higher raw material costs, and the processes are of lower productivity and are often still in the infancy of their technical development. This explains that it is no trivial task to get down the advantage of fossil-based competitors on the plastic market. Therefore, the market success of biopolymers like PHA requires R&D progress at all stages of the production chain in order to compensate for this disadvantage, especially as long as fossil resources are still available at an ecologically unjustifiable price as it does today.

Ecological performance is, although a logical argument for biopolymers in general, not sufficient to make industry and the society switch from established plastics to bio-alternatives. On the one hand, the review highlights that there’s indeed an urgent necessity to switch to such alternatives; on the other hand, it demonstrates the individual stages of the production chain, which need to be addressed to make PHA competitive in economic, environmental, ethical, and performance-related terms. In addition, it is demonstrated how new, smart PHA-based materials can be designed, which meet the customer’s expectations when applied, e.g., in the biomedical or food packaging sector.

Open access

Peter M. Eze, Joy C. Nnanna, Ugochukwu Okezie, Happiness S. Buzugbe, Chika C. Abba, Chidimma R. Chukwunwejim, Festus B. C. Okoye and Charles O. Esimone

Abstract

Endophytic fungi associated with Nigerian plants have recently generated significant interest in drug discovery programmes due to their immense potential to contribute to the discovery of new bioactive compounds. This study was carried out to investigate the secondary metabolites of endophytic fungi isolated from leaves of Newbouldia laevis, Ocimum gratissimum, and Carica papaya. The plants were collected from Agulu, Anambra State, South-East Nigeria. Endophytic fungal isolation, fungal fermentation; and extraction of secondary metabolites were carried out using standard methods. The crude extracts were screened for antimicrobial activities using the agar well diffusion method, and were also subjected to high performance liquid chromatography (HPLC) analysis to identify their constituents. A total of five endophytic fungi was isolated, two from N. laevis (NL-L1 and NL-L2), one from O. gratissimum (SL-L1), and two from C. papaya (PPL-LAC and PPL-LE2). In the antimicrobial assay, the extracts of NL-L2, SL-L1, and PPL-LE2 displayed mild antibacterial activity against both Gram negative and Gram positive test bacteria. PPL-LAC extract showed mild activity only against S. aureus, while no antimicrobial activity was recorded for NL-L1 extract. All the endophytic fungal extracts showed no activity against the test fungi C. albicans and A. fumigatus. HPLC analysis of the fungal extracts revealed the presence of ethyl 4-hydroxyphenyl acetate and ferulic acid in NL-L1; ruspolinone in NL-L2; protocatechuic acid, scytalone, and cladosporin in SL-L1; indole-3-acetic acid and indole-3-carbaldehyde in PPL-LE2; and indole-3-acetic acid in PPL-LAC. The findings of this study revealed the potentials possessed by these plants as source of endophytes that express biological active compounds. These endophytes hold key of possibilities to the discovery of novel molecules for pharmaceutical, agricultural and industrial applications.

Open access

Manuela-Maria Manziuc, Cristina Gasparik, Marius Negucioiu, Mariana Constantiniuc, Alexandru Burde, Ioana Vlas and Diana Dudea

Abstract

Translucent monolithic zirconia is the newest option of zirconia-based ceramics, which aimed to substitute the opaque classic yttria-stabilized tetragonal zirconia polycrystal (Y-TZPs) in more demanding esthetic cases.

The aim of this review was to assess the available literature regarding the optical, chemical and mechanical properties of translucent zirconia ceramics.

This systematic review was developed according to the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines. An electronic literature search was undertaken through Medline (National Library of Medicine) via PubMed to identify relevant articles, published in the interval 2010-2018. The search was limited to the English language publications, in vitro studies of color and microstructure of translucent zirconia material.

Yttria-stabilized tetragonal zirconia polycrystals (Y-TZPs) has excellent mechanical properties, but its intense white color and high opacity represent an esthetic limit. Cubic zirconia represents a new generation of dental ceramics with molecular structure and physical properties different from the conventional zirconia. Dental manufacturers created new formulations of this restorative material, introducing new cubic varieties of zirconia with improved optical properties. Translucent monolithic zirconia provides a new restorative option that combines strength with improved esthetics, due to its increased translucency. Translucent zirconia is indicated for anterior and posterior restorations but should be used carefully for discolored teeth, because the background color can affect the final esthetic appearance of the restoration.

Open access

Donald K. Martin

Abstract

This paper reports the use of low-frequency ultrasound to influence transport in porous hydrogels with a transducer attached in direct contact with the hydrogel. This is a different configuration than for ultrasound-generating devices utilized previously for enhancing transport of molecules. The advantages of the system reported in this manuscript are that (i) much less acoustic power is required to influence the transport in the hydrogel that is in direct contact with the ultrasonic transducer, and (ii) no cavitation is induced in the hydrogel to influence the transport. This system was first tested in bench-top in vitro experiments by quantifying the transport of gold nanoparticles stimulated by low-frequency ultrasound. Then, to provide an in vivo example for potential biotechology applications, the system was demonstrated to be capable of transporting drugs across the tunics of a rabbit eye into the ocular circulation so as to target the transported drug to the outer retina.

Open access

Evgeni Eltzov, Abri Lavena De Cesarea, ‘Yuen Kei Adarina Low and Robert S. Marks

Abstract

A vast majority of people today spend more time indoors than outdoors. However, the air quality indoors may be as bad as or even worse than the air quality outside. This is due to the continuous circulation of the same air without proper ventilation and filtration systems, causing a buildup of pollutants. As such, indoor air quality monitoring should be considered more seriously. Indoor air quality (IAQ) is a measure of the air quality within and around buildings and relates to the health and comfort of building occupants. To determine the IAQ, computer modeling is done to simulate the air flow and human exposure to the pollutant. Currently, very few instruments are available to measure the indoor air pollution index. In this paper, we will review the list of techniques available for measuring IAQ, but our emphasis will be on indoor air toxicity monitoring.

Open access

Muhammad Abdul Kadir and K. Siddique-e Rabbani

Abstract

Tetra-polar electrical impedance measurement (TPIM) with a square geometry of electrodes is useful in the characterization of epithelial tissues, especially in the detection of cervical cancer at precancerous stages. However, in TPIM, the peak planar sensitivity just below the electrode surface is almost zero and increases to a peak value at a depth of about one third to one half of the electrode separation. To get high sensitivity for the epithelial layer, having thicknesses of 200 μm to 300 μm, the electrode separation needed is less than 1 mm, which is difficult to achieve in practical probes. This work proposes a conical conducting layer in front of a pencil like probe with a square geometry of TPIM electrodes to create virtual electrodes with much smaller separation at the body surface, thus increasing the sensitivity of the epithelial tissues. To understand the improvements, if any, 3D sensitivity distribution and transfer impedance were simulated using COMSOL Multiphysics software for a simplified body tissue model containing a 300 μm epithelial layer. It has been shown that fractional contribution of an epithelial layer can be increased several times placing a cylindrical conducting layer in between the tissue surface and the electrodes, which can further be enhanced using a conical conducting layer. The results presented in this paper can be used to choose an appropriate electrode separation, conducting layer height and cone parameters for enhanced sensitivity in the epithelial layer.

Open access

Jakob Orschulik, Diana Pokee, Tobias Menden, Steffen Leonhardt and Marian Walter

Abstract

Lung pathologies such as edema, atelectasis or pneumonia are potentially life threatening conditions. Especially in critically ill and mechanically ventilated patients, an early diagnosis and treatment is crucial to prevent an Acute Respiratory Distress Syndrome [1]. Thus, continuous monitoring tool for the lung condition available at the bedside would be highly appreciated. One concept for this is Electrical Impedance Tomography (EIT). In EIT, an electrode belt of typically 16 or 32 electrodes is attached at the body surface and multiple impedance measurements are performed. From this, the conductivity change inside the body is reconstructed in a two-dimensional image. In various studies, EIT proved to be a useful tool for quantifying recruitment maneuvers, the assessment of the ventilation homogeneity, the detection of lung edema or perfusion monitoring [2, 3, 4, 5]. Nevertheless, the main problem of EIT is the low spatial resolution (compared to CT) and the limitation to two dimensional images. In this paper, we try to address the latter issue: Instead of projecting conductivity changes onto a two-dimensional image, we adjust electrode positions to focus single tetrapolar measurements to specific, three-dimensional regions of interest. In earlier work, we defined guidelines to achieve this focusing [6, 7]. In this paper, we demonstrate in simulations and in a water tank experiment that applying these guidelines can help to detect pathologies in specific lung regions.

Open access

Robert F. Melendy

Abstract

In a succession of articles published over 65 years ago, Sir Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley established what now forms our physical understanding of excitation in nerve, and how the axon conducts the action potential. They uniquely quantified the movement of ions in the nerve cell during the action potential, and demonstrated that the action potential is the result of a depolarizing event across the cell membrane. They confirmed that a complete depolarization event is followed by an abrupt increase in voltage that propagates longitudinally along the axon, accompanied by considerable increases in membrane conductance. In an elegant theoretical framework, they rigorously described fundamental properties of the Na+ and K+ conductances intrinsic to the action potential.

Notwithstanding the elegance of Hodgkin and Huxley’s incisive and explicative series of discoveries, their model is mathematically complex, relies on no small number of stochastic factors, and has no analytical solution. Solving for the membrane action potential and the ionic currents requires integrations approximated using numerical methods. In this article I present an analytical formalism of the nerve action potential, Vm and that of the accompanying cell membrane electric field, Em. To conclude, I present a novel description of Vm in terms of a single, nonlinear differential equation. This is an original stand-alone article: the major contribution is the latter, and how this description coincides with the cell membrane electric field. This work has necessitated unifying information from two preceding papers [1,2], each being concerned with the development of closed-form descriptions of the nerve action potential, Vm.

Open access

Oliver Pabst

Abstract

It has been demonstrated before that human skin can be modeled as a memristor (memory resistor). Here we realize a memristor bridge by applying two voltages of opposite signs at two different skin sites. By this setup it is possible to use human skin as a frequency doubler and half-wave rectifier which is an application of the non-linear electrical properties of human skin. The corresponding electrical measurements are non-linear since these are affected by the applied stimulus itself.

Open access

Jaan Ojarand and Mart Min

Abstract

Different excitation signals are applicable in the wideband impedance spectroscopy in general. However, in electrical bioimpedance (EBI) measurements, there are limitations that set specific demands on the properties of the excitation signals. This paper compares the efficiency of different excitation signals in a graspable presentation and gives recommendations for their use. More exactly, the paper deals with finding the efficient excitation waveforms for the fast spectroscopy of electrical bioimpedance. Nevertheless, the described solutions could be useful also in other implementations of impedance spectroscopy intended for frequency domain characterization of different objects.