Browse

You are looking at 1 - 10 of 946 items for :

  • Biotechnology x
Clear All
Open access

Wioletta Drożdż, Hanna Boruczkowska, Tomasz Boruczkowski, Ewa Tomaszewska-Ciosk and Ewa Zdybel

Abstract

Fruit and vegetable processing by-products, undervalued until recently, are rich sources of nutrients. This study investigated properties of extruded corn puffs with addition (5–20%) of blackcurrant or chokeberry pressings. We assessed expansion rate, water absorption index (WAI) and water solubility index (WSI) of the produced extru-dates, the concentration of polyphenols, and antioxidant activity measured by FRAP method and ABTS method. The puffs with addition of chokeberry pressings had higher WSI values, higher phenolic acids, flavonols, and anthocyanins content, and higher antioxidant activity than puffcorn with addition of blackcurrant pressings. The corn puffs with addition of fruit pressings contained much higher concentrations of phenolic compounds and were characterized by much higher antioxidant activity than pure puffcorn. This confirms the usefulness of addition of such fruit processing by-products in order to manufacture functional food.

Open access

Maciej Mrówka, Tomasz Machoczek, Paweł Jureczko, Małgorzata Szymiczek, Magdalena Skonieczna and Łukasz Marcoll

Abstract

The purpose of the conducted study was to analyse new materials intended for contact with the human body in view of their physical, chemical and biological properties. The authors have put to test six commercially available materials, four out of which were composite polyamide 12-based materials, while two were polyurethanes. The examined materials were assessed in terms of the surface. Subsequently, their hardness and biocompatibility were tested. The authors devoted major attention to the tests of absorption and emissivity of water, the pH = 7.4 PBS buffer solution and pH = 4.3 artificial sweat in temperatures of 21oC and 37°C. The results of the tests have confirmed the non-toxicity of all the tested materials and allowed to provide their characteristics in terms of their surface, hardness, as well as absorption and emissivity of various body fluids. Both polyamide 12 and the tested polyurethanes are classified as thermoplastics that may be used in additive technology.

Open access

Damian Milde, Leszek Urbańczyk, Marcin Figura and Wojciech Piś

Abstract

The polyphosphoric acids (PPA) were synthesized in a cascade reactors system from P2O5 obtained from the burning of Kazakh phosphorus. Presented system provides guidelines for the PPA production process using phosphoric acids only at concentrations above 100% (in conversion to H3PO4). Polyphosphoric acids are processed in a cascade reactors system, where the in 1st concentration of PPA is increased by addition of P2O5, while in the 2nd reactor PPA is diluted with the use of 85% phosphoric acid. Produced PPA can be obtained in the 100–118% range and is characterized by high chemical purity due to the reduction of the corrosivity of the reaction, which results in very low content of iron (below 2 ppm Fe).

Open access

Anna Trusek

Abstract

Flaky graphene oxide was activated with divinylsulfone followed by immobilization of the β-galactosidase enzyme. An active and stable preparation was obtained. β-galactosidase stability after immobilization was much higher than with the native enzyme. The half-life time of the immobilized enzyme was estimated as 165 hours, while for the native form, the estimate was only 5 hours. The developed procedure for the preparation of flaked graphene and its use in the chemical immobilization of enzymes can be used for any enzyme. A processing solution for continuous operation was proposed and verified using cow’s milk, with lactose as the hydrolysed substrate, as a dosing stream. Lactose, a milk sugar, was effectively hydrolysed. Product for allergy sufferers who cannot digest lactose has been obtained in this way.

Open access

Katarzyna Przywecka, Barbara Grzmil and Krzysztof Kowalczyk

Abstract

Many studies have been carried out in the direction of improvement of the effectiveness of commonly utilized phosphate corrosion inhibitors. For this purpose various types of modifications are realized, e.g. introduction of different cations to the pigment composition or replacement of phosphate anions with others. In the presented work, anticorrosive pigments containing calcium hydrogen phosphate, and/or calcium hydroxyphosphate, and calcium molybdate were obtained. The phase and chemical composition and the oil absorption number of those materials were determined. The anticorrosive properties were investigated by an electrochemical noise method. The obtained results were compared with previously published studies concerning pigments containing (NH4)3Al2(PO4)3 and/or AlPO4, and CaMoO4. It was found that the pigment containing only calcium molybdate(VI) is not an effective corrosion inhibitor. However, the pigments comprising a mixture of CaHPO4 and CaMoO4 exhibited good anticorrosive properties and they were characterized by higher effectiveness in the corrosion protection than compared materials.

Open access

Bartosz Moszowski, Tomasz Wajman, Krzysztof Sobczak, Marek Inger and Marcin Wilk

Abstract

This article describes the influence of various design modifications of the ammonia oxidation reactor operating in nitric acid plant TKIV in Kędzierzyn-Koźle on flow distribution of an air-ammonia mixture. The CFD (Computational Fluid Dynamics) simulations of turbulent flow were carried out with SST k-ω turbulence model to close the system of RANS (Reynolds Averaged Navier-Stokes) equations. The simulation results show that the properly selected perforated plate screen and the conical diffuser ensure uniform flow of gas on the ammonia oxidation catalysts and on the catalysts for nitrous oxide decomposition. It was proved experimentally achieving uniform temperature of nitrous gases in different locations under the catalytic gauzes and high efficiency of ammonia oxidation and nitrous oxide decomposition

Open access

Salima Chebbi, Atmane Allouche, Marian Schwarz, Souhila Rabhi, Hayet Belkacemi and Djoudi Merabet

Abstract

The present study investigates the application of induced air flotation (IAF) technique on PAHs (PAHs) removal performance from a real oilfield produced water of a separator cell. The quantification of total PAHs (PAHtot) was done using ultraviolet-visible spectrometry (UV-Vis) according to the naphthalene calibration curve. The UV-Vis spectra of naphthalene dissolved in a mixture of the binary solvent (water-ethanol) and the Tween 80 showed stability in the molecular orbital of C10H8. The use of small concentration of Tween 80 was revealed to be discrete in the quantification of PAHtot. The flotation process was improved at the critical micelle concentration of Tween 80 (CMC) of 2 % and the critical coalescence concentration of ethanol (CCC) of 0.5 mL/L for the PAHtot recovery of 49.76 % and the PAHtot content in the pulp of 50.24 %. At these concentrations, half of PAHtot was removed from produced water PW. Above the CMC and the CCC, the PAHtot recovery decreased and the PAHtot content in the pulp increased. It was found that there is a collector concentration at which the amount of water carrying from the pulp to the concentrate was increased and in parallel, the PAHtot recovery increased and the PAHtot content in the pulp decreased. Both of the CMC and the CCC have promoted the decrease on the conditioning time from 30 to 10 min and the flotation time from 20 to 6 min. Since the impeller speed and air flow rate were constant, the flotation of PAHs was limited. The flotation kinetics of PAHtot was described by the Higuchi model.

Open access

Serap Fındık

Abstract

Ultrasonic irradiation is one of the advanced oxidation methods used in wastewater treatment. In this study, ultrasonic treatment of petroleum refinery effluent was examined. An ultrasonic homogenizator with a 20 kHz frequency and an ultrasonic bath with a 42 kHz frequency were used as a source for ultrasound. The effects of parameters such as ZnO amount, ozone saturation time, and type of ultrasound source on the degradation of petroleum refinery effluent were investigated. The degradation of petroleum refinery effluent was measured as a change in initial chemical oxygen demand (COD) and with time. According to the results, degradation increased with the addition of ZnO in an ultrasonic probe. There was also a positive effect of ozone saturation before sonication then applying ultrasound on the degradation for an ultrasonic probe. It was observed that there was no positive effect of ZnO addition and ozone saturation on degradation for an ultrasonic bath.

Open access

Dalila Ksouri, Hafit Khireddine, Ali Aksas, Tiago Valente, Fatima Bir, Nadir Slimani, Belén Cabal, Ramón Torrecillas and José Domingos Santos

Abstract

In this work ternary bioactive glasses with the molar composition 63 % SiO2, 28 % CaO, and 9 % P2O5 have been prepared via sol-gel processing route leading to xerogel or aerogel glasses, depending on the drying conditions. Two types of drying methods were used: atmospheric pressure drying (evaporative), to produce xerogels, and supercritical fluids drying, to obtain aerogels. Both dried gels were subjected to heat-treatment at three different temperatures: 400, 600 and 800 ºC in order to the removal of synthesis byproducts and structural modifications. The resulting materials were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA), and by in vitro bioactivity tests in simulated body fluid. The influence of the drying and the sintering temperature of their structure, morphology, and bioactivity of the final products were evaluated. The results show a good bioactivity of xerogel and aerogel bioactive glass powders with the formation of an apatite layer after one day of immersion in SBF solution for aerogel bioactive glass powders and a particle size less than 10 nm. An apatite layer formed after 3 days in the case of xerogel bioactive glass powders and a particle size around 100 nm.

Open access

Zita Tokárová and Anna Biathová

Abstract

Substituted thiophene-2-carbaldehydes 1a-dwere utilized in the synthesis of symmetrically substituted thiazolo[5,4-d]thiazoles 3a-d. Bis(5,4-d)thiazoles with thiophene core at the termini are the most employed in the chemistry of materials but exhibit insufficient solubility in majority of organic solvents with notable impact on the low yields of products. Accordingly, the synthetic approach towards 2,5-dithiophen- 2-yl-thiazolo[5,4-d]thiazole (3a) and its substituted derivatives 3b-d is discussed under the various reaction conditions. Appropriate structural characterisations are included with emphasis on relationship between structure and physicochemical properties highlighting the UV-Vis and fluorescence.