Browse

1 - 10 of 401 items :

  • Life Sciences x
  • Electrical Engineering x
Clear All

Abstract

In the present era of continually increasing energy demand, Europe faces many challenges, such as high and unstable energy prices, growing global energy demand, increasing threat of climate change, sluggish progress within energy efficiency and issues related to increasing demand for the use of renewable energy sources. It is desirable to seek opportunities to use energy consumed most reasonably, thus ensuring continuous improvement of energy efficiency in the industry. The scope of the research includes reviewing studies in this matter and analysing the most beneficial solutions for the plant. The work aims to assess possible undertakings to modernise the energy management of an industrial plant on the example of Bulten Poland S.A. rationally and profitably for the plant. The work contains an analysis of the profitability of the potentially most beneficial solutions in terms of improving the energy efficiency of the plant. Mentioned in the article solutions, aiming increasing energy efficiency, helped become the plant independent within heating up facilities. Total heat recovery potential in amount of 18 965 GJ is motivation for further activities. This is a great opportunity to reduce significantly carbon footprint (replacing lightening into LED technology reduced CO2 by 206.3 Mg/year) and be more competitive on the market by reducing costs of product.

Abstract

The use of oil fly ash after the recovery of heavy valuable metals was investigated. More specifically, its use, as an adsorbent of dyes from industrial wastewater, was evaluated. Methylene blue was used as a model compound to study the adsorption capacity of the proposed carbonaceous residue from metal recovery treatments. The effects of contact time, initial dye concentration, and absorbent dose were investigated. The maximum amount of dye was adsorbed after one hour. Moreover, 1-3 g of residues were necessary for the removal of 200-1000 mg dm−3 from 0.050 dm3 of contacted solution. The Langmuir isotherm model was in good agreement with the adsorption equilibrium data, indicating a maximum monolayer saturation capacity of approximately 40 mg/g at 25 °C. High abatement efficiencies (up to 99 %) were obtained, and the adsorbed dye was released almost immediately by re-contacting with water. The adsorption capacity was at least four times lower than that of commercially available active carbon. The double treatment of oil fly ash with deionised water and hydrochloric acid allows for the extraction of over 85 % of the vanadium, iron, and nickel content in the ash. However, the negligible or zero cost of solid residues, otherwise disposed in landfills, indicates their potential as a valid alternative. The use of oil fly ash for both recovery of heavy valuable metals and the subsequent removal of dyes from wastewater suggest a zero-waste process.

Abstract

In the year 2016, passive biomonitoring studies were conducted in the forest areas of southern and north-eastern Poland: the Karkonosze Mountains (Kark), the Beskidy Mountains (Beskid), Borecka Forest (P. Bor), Knyszynska Forest (P. Kny), and Białowieza Forest (P. Bia). This study used bark from the tree, Betula pendula Roth. Samples were collected in spring (Sp), summer (Su), and autumn (Au). Concentrations of Mn, Fe, Ni, Cu, Zn, Cd, and Pb were determined for the samples using the atomic absorption spectrometry method with flame excitation (F-AAS). Based on the obtained results, the studied areas were ranked according to level of heavy-metal deposition: forests of southern Poland > forests of north-eastern Poland. Some seasonal changes in the concentrations of metals accumulated in bark were also indicated, which is directly related to their changing concentrations in the air during the calendar year, for instance, the winter heating season produces higher concentrations of heavy metals in the bark samples taken in spring. When deciding to do biomonitoring studies using bark, but also other biological materials, it is necessary to take into account the period in which the conducted research is done and the time when the samples are taken for analysis, because this will have a significant impact on the obtained results.

Abstract

The aim of the study was to determine the effectiveness of leachates from municipal landfill co-treatment with the dairy wastewater in an aerobic membrane bioreactor. It was working in MSBR (sequential membrane bioreactor) systems twice daily and was equipped with the immersed membrane module installed inside what enabled its back-washing performance. The system was working. The concentration of activated sludge in the membrane bioreactor was equal to 4.0 g/dm3. However, the sludge load was at the level of 0.06 g COD/(g d.m. · d). The oxygen concentration was at the level of 3.0 g O2/m3. The share of leachate was varied in a range of 5 to 15 % vol. The evaluation of the effectiveness of the treatment process was based on the change of parameters characterizing the crude sewage and treated sewage. All analysis was carried out according to standards. Following parameters were determined: COD, BOD5, TOC and concentrations of phosphate phosphorus, total nitrogen and ammonium nitrogen. Chemical analysis is often not enough to define the degree of wastewater treatment. It was used toxicological research to determine the effect on the environment. Toxicity of wastewaters was measured using biotests with Vibrio fischeri and Daphnia magna. The results revealed that the volume of leachate in the treated mixture should not exceed 10 % vol. The following conclusion can be drawn from the present research - co-treated wastewater was not toxic. Landfill co-treatment with the dairy wastewater impacts on the effectiveness of biological wastewater treatment. Leachate includes substances which have low susceptibility to biodegradation; on the other hand, dairy wastewaters provide a lot of organic compounds, which can help to treat them.

Abstract

Pretreatment is an essential step in the conversion of lignocellulosic biomass into valuable products. It aims to increase the biomass susceptibility to enzymatic saccharification to generate fermentable monosaccharides. In this study, the efficiency of 2 % potassium hydroxide (KOH) solution used as a pretreating agent for various lignocellulosic feedstocks, such as corn straw, corncob, and poplar wood, was evaluated. The influence of the pretreatment time, which varied from 0.5 to 24 h at 50 °C, on the alteration of biomass composition was investigated, as well as the enzymatic digestibility. Finally, the overall sugar yields were determined. For corncob, the yield on average amounted to 453.9 ±18.9 mg·g−1 raw (untreated) biomass, regardless of the pretreatment time. The overall sugar yield for both the corn straw and poplar wood biomass increased with increased pretreatment time and ranged from 333.0 to 438.4 mg·g−1 raw biomass and from 123.2 to 215.7 mg·g−1 raw biomass, respectively. Based on the results obtained, the most appropriate pretreatment times for all types of biomass were proposed. The results of this study may be useful for the development of lignocellulosic biomass processing technology.

Abstract

In the present study, the creeks and lakes located at the western shore of Admiralty Bay were analysed. The impact of various sources of water supply was considered, based on the parameters of temperature, pH and specific electrolytic conductivity (SEC 25). All measurements were conducted during a field campaign in January–February 2017. A multivariate dataset was also created and a biplot of SEC 25 and pH of the investigated waters was performed. The average temperatures of the investigated waters were 0.10-8.10 °C. The pH values indicate that most of the water environments of the analysed area are slightly acidic to alkaline (5.26–8.50) with two exceptions: Siodlo II Creek (9.26) and Petrified Forest Creek (8.95), which are characterised by greater alkalinity. At the measurement points closest to the Baranowski Glacier and Ecology Glacier, SEC 25 values were the lowest (26.8–61.1 µS·cm–1), while the remaining values ranged from 79.0 to 382 µS·cm–1 for the whole studied area. Based on the results it is concluded that the periodic intensive inflow of ablation waters, combined with morphological changes in the glacier front, causes a significant variability in the outflow network, creating the conditions for changes in basic physicochemical parameters. Moreover, it is observed that local depressions in the terrain form sedimentation traps in which, alongside fine-grained deposits, compounds can accumulate that originate from in situ sedimentation and that are also associated with surface runoff from the melting of snow cover, buried ice and permafrost.

Abstract

Using survey, we discuss how climate and environmental issues awareness affects residents’ low carbon use behaviour. The results are following. Firstly, climate and environmental issues awareness positively affects residents’ low carbon use. Secondly, perceived effectiveness has mediate effect on the relationship between climate and environmental issues awareness and low carbon use behaviour partly. Thirdly, perceived value has negative moderate effect on the relationship between climate and environmental issues awareness and low carbon use conduct. The results of this study show that when residents feel higher perceived value about their low carbon consumption, they will engage in low carbon use even with lower climate and environmental issues awareness. It tells us that we should treat the residents differently with classification when advocate low carbon use. Specifically, there are some product and service in which consumers can gain high perceived value if the residents frugally use them with high efficiency. And we need to make effort to the following things: we improve the perceived value with hard working, and on the other hand, we make enough effort to enable the residents to deeply experience the perceived value via multiple means.

Abstract

The possibility of applying a colloidal solution of nanosilver in the closed circuit of pool water treatment as a complementary disinfectant with chlorine compounds was presented. The applied nanosilver solution is characterized, by hygienic certificate, as having a very high biocidal effect. Samples of pool water for the control were taken from 5 points of a pool circuit. The safety of the water was appraised by comparing the bacteriological and physicochemical test results with the admissible values specified by hygienic requirements. The results show that nanosilver solution can be successfully applied for precoating the filter bed and supporting the disinfection system. Special attention was paid to the bacteriological purity and stability of the disinfectant concentration. The influence of concentration of colloidal nanosilver (0-25 mg/dm3) on bacterial bioluminescence, crustacean mortality and macroscopic effect of root growth and seed germination of selected plants was analysed. The results obtained were related to the current knowledge on the impact of nanoparticles on indicator organisms. It was found that due to many still unknown mechanisms of interaction and transformation of nanoparticles in living organisms, further study of this issue is necessary.

Abstract

To increase the dewatering effect, sewage sludge should be properly prepared before dewatering. Sludge conditioning is a process whereby sludge solids are treated with chemicals or various other means to improve dewatering characteristics of the sludge by reducing the specific resistance and compressibility of the sludge. The aim of the research was to determine the possibility of increasing the efficiency of sewage sludge dewatering by applying chemical agents and ultrasonic field. Some parameters, such as suspension, chemical oxygen demand (COD), phosphorus and ammonium nitrogen content in sludge supernatant, were also analysed. Digested sludge belonged to the group of hardly dewatered sludge, its capillary suction time (CST) was of high value (2639 s). The lowest CST value (88.5 s) was obtained for the unsonicated sludge prepared only with PIX 113 at a dose of 7.0 mg/g d.m. Both the dose and the type of chemicals used, as well as the time of sonication, had an impact on the changes occurring in sludge properties. The increase in mechanical dewatering efficiency was obtained by using a combination of methods applied for sludge preparation, where the sonication of sludge was used at the preliminary stage and followed by dosing chemical substances. This resulted in the reduction of sludge final hydration and changes of other parameters. In addition, combined action of PIX 113 and Zetag 8180 allowed to reduce the content of suspended solids and COD in sludge supernatant.

Abstract

The structure of phytoplankton assemblages in three small water bodies was compared and abiotic factors were described. It indicated considerable differences in the species abundance and biomass of the phytoplankton as well as the chemical composition of water between artificial pond (No. 2) and others. A total of 455 phytoplankton taxa were recorded. All ponds were characterized by greatest species richness of Chlorophyta. The highest biomass was noted in August-September 2015, and it was true for each pond. The CCA models showed dependences between the variables under study and phytoplankton groups. They indicated which environmental variables had the greatest influence on the biomass of phytoplankton in the waterbodies under analysis. The biomass of most of the taxonomic group in the phytoplankton (except Miozoa) depended on the presence of nitrogen not only in form of nitrates but also in the form of mineral nitrogen. The research findings suggest the trend of future studies on the phytoplankton in these ponds. The analysis of its variability should also include the influence of light and the influence of consumers on the food chain in the ecosystem.