Browse

1 - 10 of 489 items :

  • Materials Sciences x
Clear All
enviBUILD
OPEN ACCESS
Buildings and Environment

Abstract

NASA is planning to launch robotic landers to the Moon as part of the Artemis lunar program. We have proposed sending a greenhouse housed in a 1U CubeSat as part of one of these robotic missions. A major issue with these small landers is the limited power resources that do not allow for a narrow temperature range that we had on previous spaceflight missions with plants. Thus, the goal of this project was to extend this temperature range, allowing for greater flexibility in terms of hardware development for growing plants on the Moon. Our working hypothesis was that a mixture of ecotypes of Arabidopsis thaliana from colder and warmer climates would allow us to have successful growth of seedlings. However, our results did not support this hypothesis as a single genotype, Columbia (Col-0), had the best seed germination, growth, and development at the widest temperature range (11–25 °C). Based on results to date, we plan on using the Columbia ecotype, which will allow engineers greater flexibility in designing a thermal system. We plan to establish the parameters of growing plants in the lunar environment, and this goal is important for using plants in a bioregenerative life support system needed for human exploration on the Moon.

Abstract

Increasingly high demands on environmental protection are intensifying the development of sustainable construction. Ventilated facades can provide an energy-efficient alternative to standard facades, that is, external thermal insulation composite systems (ETICS). The article compares standard facades, which was a reference, to ventilated facades in two variants: closed joints and open joints. The comparison was made by means of numerical simulations of computational fluid dynamic (CFD), under conditions of high outside temperature and high sunshine. The results showed great benefits of using ventilated facades in such external climate conditions. It was also observed that the selection of the variant of ventilated facade in the system of close or open joints has minimal influence on thermal efficiency of the whole partition.

Abstract

In this work, copper doped nickel oxide as the thin films have been elaborated by a spin coating method, the nickel chloride hexahydrate (0.8M) and copper (II) chloride dehydrate (Cu/Ni = 0, 2.15, 4.3, 8.6 and 12.9 At.%) were used to prepare the Cu doped NiO thin films. The Cu doped NiO thin films were heated at a crystallization temperature of 600 °C with 2 h. The obtained thin films by spin coater method have a film thickness in the order of 400 nm. The prepared Cu doped NiO thin films have a polycrystalline with cubic structure (200) peak was observed. The optical property shows that the prepared thin films have a transmittance of about 70 %. The Cu doped NiO thin films have minimum bandgap energy is 3.85 eV at 12.9 at.%, the thin film deposited at 8.6 at.% has the highest value of Urbach energy is 425 meV. The Cu doped NiO thin films have a high electrical conductivity of 8.6 at% it is 7 (Ω.cm)−1. The prepared Cu doped NiO thin film was suitable for gas sensing applications due to the existing phase and higher electrical conductivity.

Abstract

This article presents the results of experimental work carried out both in situ (coring; pressuremeter test) and in the laboratory (drying-wetting and oedometric tests) to describe the volumetric behavior on drying-wetting path of a swelling clayey soil of eastern Algeria. In order to perform drying-wetting tests the osmotic technique and saturated salts solutions were used. These suction-imposed methods have gained widespread acceptance as reliable methods for imposing suction on soil specimens. They allowed to sweep a wide range of suctions between 0 and 500 MPa. The ability to impose suction on soil specimens allows for drying and wetting stress paths to be applied to evaluate resulting changes in state parameters (void ratio, degree of saturation and water content). These paths were carried out on specimens with different initial states. Slurries of soil were used to characterize the reference behavior, while the undisturbed soil samples allow to describe the behavior of material under in situ conditions. In the last part of this article and to specify the behavior observed in the saturated domain, a comparison between the resulting deformations of the drying-wetting test and those resulting from the oedometric test was made.

Abstract

Wellbore collapse is an instability-event that occurs at low mud density and leads to unfavorable economic project, reaching billions of US dollars. Thus, it is important to accurately determine its value, especially in deepwater horizontal wellbores. The main reasons for nontrivial problems with such wellbores are evident: the shale encountered are anisotropic in nature and possess planes of weakness; they react with water-based mud, generate osmotic stresses, swell, and fall unto the wellbore bottom, thereby increasing the non-productive time. To this end, salts are added to reduce the collapse tendency, but it is not currently known what amount of salt addition maintains stability, and does not lead to wellbore fracture; in deepwater, the current trend in global warming means there is a future concern to the industry. As the climate temperature increases, more ice melts from the polar region, the seawater expands and the sea level rises. How to incorporate the corresponding effect on collapse gradient is scarcely known. This study captures the major concerns stated above into wellbore stability analysis. Following the classical approach for geomechanical analysis, Mogi-Coulomb criterion was combined with a constitutive stress equation comprising contributions from mechanical and osmotic potentials of mud and shale. A sophisticated industry model was used to consider the deepwater effect. The results show significant reduction in collapse gradient as the water depth increases, also, larger difference between the mud and shale chemical activities represents higher complexities in the wellbore. In addition, the reduction in the chemical activities of mud limited to 37.5% of the initial value can be practically safe.

Abstract

The paper presents the results of laboratory tests of plastic limit wP and liquid limit wL of Eemian gyttja characterized by different organic matter content I om and calcium carbonate content CaCO3. Comparison of the liquid limit wL determined with the use of the Casagrande apparatus wLC and a cone penetrometer with cones having apex angles of 60° wL 60 and 30° wL 30 is shown. Based on statistical analysis of the test results, single- and two-factor empirical relationships for evaluating the plastic limit wP and liquid limit wL of Eemian gyttja depending on the organic matter content I om and/or calcium carbonate content CaCO3 are presented in this study.

Abstract

This article presents the methodology and results of single shear tests of bolt rods under dynamic impact loading generated by means of a drop hammer. Comparative analysis was also performed for bolt rod load capacity, stress and shear work under static and dynamic (impact) loading. The developed method of single shear testing of bolt rods under impact loading makes it possible to obtain repeatable test results concerning maximum bolt rod shearing force, shear stress and shear work values.

Comparative shear tests of four types of bolt rods under static and impact loading showed that the APB-type bolt rods made of AP770 steel, which was characterised by having the highest strength, exhibited the greatest shear work. AM22-type bolt rods exhibited a very similar work value. Though the AM22-type bolt rods made of A500sh steel demonstrated lower strength than the APB-type bolts, as well as a smaller diameter and cross section, they dissipated the impact energy better thanks to their higher plasticity. This could indicate the direction of optimisation for bolt rods in order to increase their impact strength.

Mathematical relationships were also formulated for selected tests, describing the real single shear courses F d =f(t) of bolts under impact loading. The obtained relationships could be applied in the load assessment process of bolt rods intended for use under roof caving, tremor and rock burst conditions.

Abstract

This article presents a modified incremental model describing pre-failure deformations of granular soils under classical triaxial conditions. The original shape of equations has been proposed by Sawicki and Świdziński [, ]. A new form of equations that are consistent with the proposed definitions of deviatoric loading and unloading is suggested. Triaxial tests necessary for calibrating the proposed model have been performed. The modified model is used to simulate the deformations and stability of sand for every pre-failure loading path and makes it possible to describe the behaviour of granular soil under both drained and undrained conditions.

A comparison of experimental and numerical results is presented. All investigations were performed in a classical tri-axial apparatus.

Abstract

In the purpose of exploring new Heusler alloys with different magnetic applications, we have employed first principles calculations method within density functional theory. After checking the structural stability of X2YZ Heusler alloys (X = Fe, Co; Y =Zr, Mo and Z = Ge, Sb), we found that Cu2MnAl type structure is more favorable for most compounds except for X2MoGe and Co2MoSb, were the Hg2CuTi structure is energetically more stable. The trends in magnetic and electronic structures can be predicted by the structure types as well as the different kinds of hybridizations between the constituents. Among the two series only two compounds were identified to be true half metals with potential applications in spintronic devices. While one compound was classified as a nonmagnetic semiconductor with a small band gap. For the rest of materials, we found that the metallic behavior is dominant. These materials show possible interesting features in technical applications as well. The effect of distortion on the magnetic properties of Co2ZrGe and Fe2ZrSb showed that the half metallic character was preserved within a moderate range of volume changes, which makes it possible to grow these materials as thin films with modern techniques.