Browse

1 - 10 of 470 items :

  • Engineering x
Clear All

Abstract

Background

Young ballet dancers are at risk of health issues associated with altered nutritional status and of relative energy deficiency in sport compared to the general population.

Aim

To evaluate the nutritional status and body composition in ballet dancers.

Materials and methods

The study group consisted of 40 young ballet dancers (mean age 19.97 years). Height and weight were measured and body mass index was calculated in all subjects (mean BMI value 19.79 kg/m2, SD: 2.051). Body composition was estimated using the bioelectrical impedance method.

Results

The dancers’ fat-free mass was 47.33 kg (SD: 5.064) and, on the average, body fat represented the 15.92% (SD: 16.91) of their body weight.

Conclusions

Ballet dancers, who usually show significantly lower BMI values compared to the general population, also displayed body fat values under the suggested range. Some screening for altered nutritional status should be performed. In addition, education programs should be recommended in young ballet dancers, in order to inform about energy and nutrition requirements for health and training and to prevent malnutrition-related problems.

Abstract

There is a strong need for a non-invasive measurement technique that is capable of accurately identifying the physiological condition change or heterogeneity of subcutaneous adipose tissue (SAT) by localizing the abnormalities within the compartment. This paper aims to investigate the feasibility of Electrical Impedance Tomography (EIT) to assess the interstitial fluid in subcutaneous adipose tissue as an enhancement method of bioelectrical impedance spectroscopy (BIS). Here, we demonstrate the preliminary result of EIT with a wearable 16 electrodes sensor. The image-based reference EIT with fat weighted threshold method is proposed. In order to evaluate the performance of our novel method, a physiological swelling experiment is conducted, and Multi-Frequency Bioelectrical Impedance Analysis (MFBIA) is also applied as a comparison with EIT results. The experimental results showed that the proposed method was able to distinguish the physiological swelling condition and effectively to remove the unexpected background noise. Furthermore, the conductivity variation in the subcutaneous layer had a good correlation with extracellular water volume change from MFBIA data; the correlation coefficient R2 = 0.927. It is concluded that the proposed method provides a significant prospect for SAT assessment.

Abstract

Apnea is one of the deadliest diseases that can be prevented and cured if it is detected in time. In this paper, we propose a precise method for early detection of the obstructive sleep apnea (OSA) disease using the latest feature selection and extraction methods. The feature selection in this paper is based on the Dual tree complex wavelet (DT-CWT) coefficients of the ECG signals of several patients. The feature extraction from these coefficients is done using frequency and time techniques. The Feature selection is done using the spectral regression discriminant analysis (SRDA) algorithm and the classification is performed using the hybrid RBF network. A hybrid RBF neural network is introduced in this paper for detecting apnea that is much less computationally demanding than the previously presented SVM networks. Our findings showed a 3 percent improvement in the detection and at least a 30 percent reduction in the computational complexity in comparison with methods that have been presented recently.

Abstract

Nonhuman primates are often used in biomedical research and to investigate physiologic processes that occur in man. Impedance plethysmography was used to measure calf, thigh, pelvic, abdominal, and thoracic volume changes in ten Rhesus and eight squirrel monkeys during five-minute exposures to HUT and HDT at angles of 5, 10, and 20 degrees. Calf, rump and tail measurements were made in three squirrel monkeys at 10 and 20 degrees of HUT and HDT. Fluid volume changes in all segments of the Rhesus monkeys were found to change during HUT an HDT in direct relation to the angle of tilt used. However, the volume changes that occurred in the squirrel monkeys were found to be quite different. Their calf, thigh, and pelvic segments lost volume during both HUT and HDT while their abdominal and thoracic segments responded similarly to those of the Rhesus monkeys. These results and those of the calf/tail measurements of the squirrel monkeys suggest that they may utilize their tails as a compensatory reservoir during postural changes and therefore, may not be an appropriate animal model for man under some orthostatic test conditions.

Abstract

The paper presents research on the near real-time atmospheric sounding system. The main objective of the research was the development and testing of the weather sounding system based on a weather balloon. The system contains a redundant system of radiosondes, a lifting platform containing weather balloon and a holding system as well as ground station. Several tests of the system were performed in August and September 2019. Altitude, reliability, resistance to weather conditions and data convergence were tested. During tests, new procedures for such missions were developed. The final test was performed for the ILR-33 Amber Rocket as a part of pre-launch procedures. The test was successful and allowed to use acquired atmospheric data for further processing. Several post-tests conclusions were drawn. The altitude of sounding by a weather balloon depends mostly on weather conditions, the amount of gas pumped and the weight of a payload. The launching place and experience of the crew play an important role in the final success of the mission, as well.

Abstract

The presented paper considers a comparison of the traditional methods for the state maximal probability determination to the proposed hybrid probabilistic and variational concept. It is shown the advantages of the described multi-optional hybrid-effectiveness functions uncertainty measure conditional optimization doctrine in the sense of avoiding the traditional ways analytical complicatedness concerning the maximal probability of the possible state determination. The results of the numerical example are presented.

Abstract

The article is in line with the contemporary interests of companies from the aviation industry. It describes thermoplastic material and inspection techniques used in leading aviation companies. The subject matter of non-destructive testing currently used in aircraft inspections of composite structures is approximated and each of the methods used is briefly described. The characteristics of carbon preimpregnates in thermoplastic matrix are also presented, as well as types of thermoplastic materials and examples of their application in surface ship construction. The advantages, disadvantages and limitations for these materials are listed. The focus was put on the explanation of the ultrasonic method, which is the most commonly used method during the inspection of composite structures at the production and exploitation stage. Describing the ultrasonic method, the focus was put on echo pulse technique and the use of modern Phased Array heads. Incompatibilities most frequently occurring and detected in composite materials with thermosetting and thermoplastic matrix were listed and described. A thermoplastic flat composite panel made of carbon pre-impregnate in a high-temperature matrix (over 300°C), which was the subject of the study, was described. The results of non-destructive testing (ultrasonic method) of thermoplastic panel were presented and conclusions were drawn.

Abstract

Noise generated by helicopters is one of the main problems associated with the operation of rotorcrafts. Requirements for reduction of helicopter noise were reflected in the regulations introducing lower limits of acceptable rotorcraft noise. A significant source of noise generated by helicopters are the main rotor and tail rotor blades. Radical noise reduction can be obtained by slowing down the blade tips speed of main and tail rotors. Reducing the rotational speed of the blades may decrease rotor thrust and diminish helicopter performance. The problem can be solved by attaching more blades to main rotor. The paper presents results of calculation regarding improvement of the helicopter performance which can be achieved for reduced rotor speed but with increased number of rotor blades. The calculations were performed for data of hypothetical light helicopter. Results of simulation include rotor loads and blade deformations in chosen flight conditions. Equations of motion of flexible rotor blades were solved using the Galerkin method which takes into account selected eigen modes of the blades. The simulation analyzes can help to determine the performance and loads of a quiet helicopter with reduced rotor speed within the operational envelope of helicopter flight states.

Abstract

One of important problems in aerospace engineering is to determine the amount of fluid in the tank in a microgravity environment. There are several methods for doing it, however, there are no proven methods to quickly gauge the amount of propellant in a tank in low gravity conditions. New and more accurate methods of such a measurement are being continually searched for. One of interesting solutions is using Electrical Capacitance Tomography (ECT) for this purpose. The article presents both numerical analysis and experimental test results using a spherical tank. The main purpose of the simulation was to determine the effect of the number of electrodes and noise signal level on the quality of reconstruction images. In numerical simulations, different models of dielectric permittivity distribution have been reconstructed. On the basis of numerical simulations, a 24-electrode sensor was designed and made. In experimental tests, different distribution of medium inside the spherical tank was investigated. The results show that the method can directly measure the mass of fuel in the tank, as well as it allows for a visualization of fuel distribution, independent of the tank position in space, and the liquid-propellant system will be used.