Browse

1 - 10 of 871 items :

  • Functional and Smart Materials x
  • Materials Sciences, other x
Clear All

Abstract

Nickel-cobalt ferrite spinels are ferrimagnetic ceramic materials that possess a great potential for application in highdensity magnetic media, recording, color imaging, ferrofluids, and high-frequency devices. A change of their structure from micro- to nano- improves their properties drastically, therefore many methods have been investigated to fabricate nanopowder of these spinels. Gel combustion method is one of them. In this research, Ni0.5Co0.5Fe2O4 nanoparticles were fabricated via gel combustion method using metallic nitrates as an oxidant and citric acid, glycine and urea as fuels and the effects of fuel type on the reaction behavior, structure and morphology of Ni0.5Co0.5Fe2O4 nanoparticles were investigated. The reaction behavior was studied by thermal analysis method (TGA-DTA), crystallite size of powders was characterized by X-ray diffraction (XRD) and their morphology was studied by FE-SEM. The results revealed that the reaction was initiated in urea, glycine and citric at 219 °C, 197 °C, 212 °C, respectively. Samples fabricated from glycine and citric acid had a pure spinel structure but the others fabricated with urea fuel had iron oxide impurity. The crystallite size of nickel cobalt ferrite nanoparticles was in the range of 58 nm to 64 nm and the nanoparticles were agglomerated.

Abstract

Nanoparticles of Li2MnO3 were fabricated by sol-gel method using precursors of lithium acetate and manganese acetate, and citric acid as chelating agent in the stoichiometric ratio. TGA/DTA measurements of the sample in the regions of 30 °C to 176 °C, 176 °C to 422 °C and 422 °C to 462 °C were taken to identify the decomposition temperature and weight loss. The XRD analysis of the sample indicates that the synthesized material is monoclinic crystalline in nature and the calculated lattice parameters are 4.928 Å (a), 8.533 Å (b), and 9.604 Å (c). The surface morphology, particle size and elemental analysis of the samples were observed using SEM and EDAX techniques and the results confirmed the agglomeration of nanoparticles and, as expected, Li2MnO3 composition. Half cells of Li2MnO3 were assembled and tested at C/10 rate and the maximum capacity of 27 mAh/g was obtained. Charging and discharging processes that occurred at 3 V and 4 V were clearly observed from the cyclic voltammetric experiments. Stability of the electrodes was confirmed by the perfect reversibility of the anodic and cathodic peak positions observed in the cyclic voltammogram of the sample. The Li2MnO3 nanoparticles exhibit excellent properties and they are suitable for cathode materials in lithium ion batteries.

Abstract

Single crystals of L-Valinium Picrate (LVP), 0.1 mol% Ni2+ doped L-Valinium Picrate, and 0.2 mol% Ni2+ doped L-Valinium Picrate were grown by low temperature solution growth method, especially by solvent evaporation technique at ambient temperature. Function groups and modes of vibration were identified by FT-IR studies. The grown crystals belong to monoclinic system which has been revealed by powder XRD. The estimated band gaps were found to be 3.86 eV for LVP, 3.72 eV for 0.1 mol% Ni2+ doped LVP, and 3.70 eV for 0.2 mol% Ni2+ doped LVP crystals, respectively. The PL excitation wavelength of the grown materials is 370 nm. All the elements (C, N, O, Ni, and Cl) as per molecular formula were present in the EDAX spectrum of the grown materials. The 0.2 mol% Ni2+ ion doped LVP materials had higher thermal stability (208 °C) than LVP and 0.1 mol% Ni2+ doped LVP.

Abstract

Biphenyl-4,4′-dicarboxylic acid (H2BDA) was used as an organic linker to synthesize bismuth and lead based organic frameworks (1 and 2). The structural/morphological studies of these metal organic frameworks (MOFs) were done using UV-Vis, Fourier transform infrared spectroscopy (FT-IR), 1H NMR, energy dispersive spectroscopy (EDXS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and powder X-ray diffraction method. Surface area as determined by Brunauer-Emmett-Teller (BET) studies revealed better N2 gas adsorption for MOF (1) compared to MOF (2). Both these MOFs exhibited good luminescence activity which was attributed to ligand-to-metal charge transfer transitions (LMCT).

Abstract

In this study, Ca4−xLa2+xTi5−xBxO17 (B = Al, Ga; x = 0, 1) ceramics were processed via a mixed oxide solid state sintering route and characterized using XRD, SEM, EDS and Vector Network Analyzer. Phase analysis of the samples showed single phase formation for the sample x = 0 while secondary phases formed for Ca4−xLa2+xTi5−xBxO17 (B = Al, Ga; x = 1) ceramics. Ca4La2Ti5O17 exhibited ∈r = 74, Q×fo = 14,116 GHz and τf = 157 ppm/°C. The substitution of Ga or Al for Ti at the B-site of Ca4La2Ti5O17 ceramics significantly improved the microwave dielectric properties i.e. Ca3La3Ti4GaO17 and Ca3La3Ti4AlO17 have ∈r = 44, Q×fo = 16,128 GHz and τf = 7.3 ppm/°C and ∈r = 46, Q×fo = 13,754 GHz and τf = −2 ppm/°C, respectively. The microwave dielectric properties of these materials are suitable for high frequency microwave applications.

Abstract

Geometrical structures, relative stabilities and electronic properties of neutral, cationic and anionic pure gold Aun+1λ and Ag-doped bimetallic AgAunλ(λ=0,±1;n=1-12) clusters have been systematically investigated by using density functional theory methodology. The optimized structures show that planar to three-dimensional structural transition occurs at n = 5 for cationic clusters. Due to strong relativistic effect of Au clusters, the ground state configurations of neutral and anionic bimetallic clusters favor planar geometry till n = 12. Silver atoms tend to occupy the most highly coordinated position and form the maximum number of bonds with Au atoms. The computed HOMO-LUMO energy gaps, fragmentation energies and second-order difference of energies show interesting odd-even oscillation behavior. The result indicates that AgAu5, AgAu2+ and AgAu2- are the most stable clusters in this molecular system. The DFT based descriptors of bimetallic clusters are also discussed and compared with pure gold clusters. The high value of correlation coefficient between HOMO-LUMO energy gaps and DFT based descriptors supports our analysis. A good agreement between experimental and theoretical data has been obtained in this study.

Abstract

Amorphous lead metaborate (Pb(BO2)2 H2O) nanostructures were synthesized by a simpl and cost-effective synthesis method which is based on precipitation of lead ions using boric acid/sodium hydroxide buffer (pH 9.2) in the presence of polyethylene glycol (PEG). Scanning electron microscopy images showed that the average particle size is 30±9 nm and the particle shape is mostly spherical. The chemical formulation of Pb(BO2)2 H2O was confirmed by infrared spectroscopy, inductively coupled plasma and thermal gravimetric analysis (TGA). The percentage of PEG molecules on the particle surface equal to 2.5 % was determined by TGA. Optical reflectance measurement was performed by UV-Vis spectroscopy. Based on the Kubelka-Munk function, it was calculated that the Pb(BO2)2 H2O nanostructures have a direct band gap of 4.6 eV.

Abstract

We report a new direct fabrication of the ZnO nanorods (NR) by hydrothermal method, in which the preparation of seed layer is eliminated. We show that the tuning of initial temperature rate during the hydrothermal process plays a key role in the structural modification of the ZnO NR. A highly oriented ZnO NR is successfully fabricated by using a low rate of initial temperature. The increase of optical absorption and electron transport was obtained by reducing the diameter and increasing distribution of the ZnO NR on the substrate. Interestingly, an additional absorption from the defects is obtained in the system, which plays an important role in expanding the optical absorption. Our system will provide a favourable characteristic for developing the high-performance optoelectronic devices with high optical absorption and high electron transport.

Abstract

Single crystals of L-asparagine doped ammonium tetroxalate dihydrate were grown using slow evaporation solution growth technique with deionized water as a solvent. The shift and intensity of the peaks in the single crystal X-ray diffraction and Fourier transform infrared analyses confirmed the inclusion of L-asparagine in the ammonium tetroxalate dihydrate crystal structure. The optical transmission characteristics viz. optical band gap, optical conductivity, etc., were determined. Thermal studies revealed the occurrence of anomalies at 135.3 °C and 221.7 °C leading to the possibility of phase transitions and thereby, ferroelectric behavior. Vickers microhardness studies enabled determination of various microhardness parameters. Dielectric behavior was analyzed by varying the temperature and frequency. Anomalies were observed at 135 °C and 221 °C suggesting the existence of ferroelectric nature of the compound. Self-defocusing effect was observed. The polarization-electric field hysteresis loops showed a pinched effect due to defects induced by inclusion of dopant. The crystals were characterized by single crystal XRD, FT-IR, DRS, UV-Vis-NIR, Vickers microhardness test as well as thermal and dielectric techniques. In brief, L-asparagine as a dopant in ammonium tetroxalate dihydrate altered various physical properties of the crystals. They were highly transparent in the visible region with a wider optical band gap, softer material than the parent, higher phase transition temperature of 135 °C, negative nonlinearity and self-defocusing ability.

Abstract

The aim of this work was to investigate the effects of moderate vacuum conditions (10 Pa, 1 × 103 Pa and 2 × 104 Pa) on glass forming ability, thermal stability and aging behavior of Co42Cu1Fe20Ta5:5B26:5Si5 amorphous samples in terms of size and distribution of crystalline precipitates. The thinnest parts (300 μm) of the wedge-shaped samples were amorphous for all vacuum conditions, and they had similar compositional, structural and thermal characteristics. However, they represented different microstructural features after heat treatments at 950 K and 1100 K. The same phases precipitated in all samples but the amount and the size of the precipitates increased as the pressure was raised to the normal atmospheric value. The differences in the glass forming ability and the microstructure due to aging are considered to originate from lower thermal characteristics, such as relaxation and reduced glass temperature as well as γ parameter, resulting from the poor vacuum pressure used in the production process. The differences in the microstructures and hardness values caused by heat treatments have been observed.