Browse

You are looking at 81 - 90 of 2,218 items for :

  • Materials Processing x
Clear All
Open access

M.W. Richert, G. Boczkal, A. Hotloś, P. Pałka and M. Karpiński

Abstract

The effect of tribological wear of contacts made from an AgNi10 alloy on microstructure and electrical properties was investigated. The contacts were tested in duty cycles loaded with alternating current of 10A intensity. With this value of the current, intensive arcing of contacts occurred. The contacts were tested in the range of 125 to 500 thousand cycles. The contacting surfaces were reported to suffer a high degree of wear, but electrical resistance of the contact system remained stable.

Open access

M. Król, T. Mikuszewski, D. Kuc, T. Tański and E. Hadasik

Abstract

The paper presents the results of the influence of commercial TiBor and AlSr10 master alloys on the refine the grains size, hardness and crystallisation process based on the thermal-derivation analysis of light cast magnesium-lithium-aluminium alloys. The effects of TiBor and AlSr10 content on the characteristic parameters of the crystallisation process of Mg-Li-Al alloys were investigated by thermal-derivative analysis (TDA). Microstructural evaluations were identified by light microscope, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy.

The results showed that the addition of TiBor master alloy reduced the grain size of Mg-9Li-1.5Al cast alloy from 900 μm to 500 μm, while the addition of AlSr10 master alloy reduced the grain size of investigated cast alloy from 900 μm to 480 μm. Moreover, an addition of TiBor and AlSr10 simultaneously reduced the grain size from 900 μm to 430 μm.

Results from the thermal-derivative analysis showed that the addition of grain refinement causes a decrease in nucleation temperature and solidus temperature.

Open access

M. Adamiak, B. Wyględacz, A. Czupryński and J. Górka

Abstract

In this article results of studies on cracks formation susceptibility in braze-welded joints of thin aluminum sheets and double-sided zinc galvanized steel sheets for car body parts made by laser brazing with high power diode laser ROFIN DL 020 and CMT MIG-brazing, with filler material in form of powder and wire accordingly, were presented. Optimal welding parameters were determined by visual acceptance criteria. On joints made with optimal parameters further examinations were carried. Results of macro- and microscopic metallographic examinations, structural roentgenography, EDS microanalysis and hardness tests were presented. Causes of brittle intermetallic Fe-Al phases formation in Al-matrix filler metal in dissimilar aluminum – zinc plated carbon steel joints were pointed.

Open access

W. Wołczyński, A.A. Ivanova, P. Kwapisiński and E. Olejnik

Abstract

A mathematical method for the forecast of the type of structure in the steel static ingot has been recently developed. Currently, the method has been applied to structural zones prediction in the brass ingots obtained by the continuous casting. Both the temperature field and thermal gradient field have been calculated in order to predict mathematically the existence of some structural zones in the solidifying brass ingot. Particularly, the velocity of the liquidus isotherm movement and thermal gradient behavior versus solidification time have been considered. The analysis of the mentioned velocity allows the conclusion that the brass ingots can evince: chilled columnar grains-, (CC), fine columnar grains-, (FC), columnar grains-, (C), equiaxed grains zone, (E), and even the single crystal, (SC), situated axially. The role of the mentioned morphologies is analyzed to decide whether the hard particles existing in the brass ingots can be swallowed or rejected by the solid / liquid (s/l) interface of a given type of the growing grains. It is suggested that the columnar grains push the hard particles to the end of a brass ingot during its continuous casting.

Open access

Konstantza Tonova

Abstract

The main achievements of liquid–liquid extraction (LLE) of fermentative organic acids from their aqueous sources using a diverse range of ionic liquids are summarized since the first study appeared in 2004. The literature survey is organized in consideration of the distinct chemical structures of the organic acids. The acids discussed include mono– or dicarboxylic ones (butyric, L-malic and succinic acids), acids bearing both carboxyl and hydroxyl groups (L-lactic, citric and mevalonic acids), and volatile organic acids (mainly acetic acid). Information is given about ionic liquids applied in recovery, and the resultant extraction efficiencies and partition coefficients. As the topic is novel and experimental studies scarce, the selection of the ionic liquids that were tested still seems random. This may well change in the future, especially after improving the ecological and toxicological characteristics of the ionic liquids in order to bring about an “in situ” method of extraction without harming the microbial producers of the organic acids.

Open access

M. Wojnicki

Abstract

In this paper, results of adsorption kinetic studies of Pd(II) chloride complex ions on activated carbon Organosrob 10 CO are presented. Spectorphotometrical method was applied to investigate the process. Kinetic model was proposed, and fundamental thermodynamic parameters were determined. Proposed kinetic model describes well observed phenomenon in the studied range of concentration of Pd(II) chloride complex ions as well, as concentration of activated carbon.

Open access

W. Wołczyński, C. Senderowski, B. Fikus and A.J. Panas

Abstract

The detonation gas spraying method is used to study solidification of the Fe-40Al particles after the D-gun spraying and settled on the water surface. The solidification is divided into two stages. First, the particle solid shell forms during the particle contact with the surrounding air / gas. Usually, the remaining liquid particle core is dispersed into many droplets of different diameter. A single Fe-Al particle is described as a body subjected to a rotation and finally to a centrifugal force leading to segregation of iron and aluminum. The mentioned liquid droplets are treated as some spheres rotated freely / chaotically inside the solid shell of the particle and also are subjected to the centrifugal force. The centrifugal force, and first of all, the impact of the particles onto the water surface promote a tendency for making punctures in the particles shell. The droplets try to desert / abandon the mother-particles through these punctures. Some experimental evidences for this phenomenon are delivered. It is concluded that the intensity of the mentioned phenomenon depends on a given droplet momentum. The droplets solidify rapidly during their settlement onto the water surface at the second stage of the process under consideration. A model for the solidification mechanism is delivered.

Open access

B. Machulec, S. Gil and W. Bialik

Abstract

In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c 3 (Westly) was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J 1 (Jaccard) was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

Open access

G. Junak, M. Cieśla and J. Tomczak

Abstract

This paper addresses numerical analyses of the bending process for tubes made of the X70 steel used in gas distribution pipe-lines. The calculations performed under the research involved simulation of processes of tube bending with local induction heating. The purpose of these calculations was to establish process parameters making it possible to develop pipe bends of geometric features conforming with requirements of the applicable standards. While performing the calculations, an analysis was conducted to determine the probability of occurrence of folding and fractures according to the Cockcroft-Latham criterion.

Open access

M. Hyrcza-Michalska

Abstract

The paper presents the study of drawability of thin sheet metals made of a nickel superalloy Inconel type. The manufacturing process of axisymmetric cup – cone and a closed section profile in the form of a circular tube were designed and analyzed. In both cases, working fluid-oil was used in place of the rigid tools. The process of forming liquid is currently the only alternative method for obtaining complex shapes, coatings, and especially if we do it with high-strength materials. In the case of nickel superalloys the search for efficient methods to manufacture of the shaped shell is one of the most considerable problems in aircraft industry [1-5]. However, the automotive industries have the same problem with so-called advanced high-strength steels (AHSS). Due to this, both industrial problems have been examined and the emphasis have been put on the process of liquid forming (hydroforming). The study includes physical tests and the corresponding numerical simulations performed, using the software Eta/Dynaform 5.9. Numerical analysis of the qualitative and quantitative forecasting enables the formability of materials with complex and unusual characteristics of the mechanical properties and forming technology. It has been found that only the computer aided design based on physical and numerical modeling, makes efficient plastic processing possible using a method of hydroforming. Drawability evaluation based on the determination of the mechanical properties of complex characteristics is an indispensable element of this design in the best practice of industrial manufacturing products made of thin sheet metals.