Browse

You are looking at 81 - 90 of 802 items for :

Clear All
Open access

Johanna-Iisebel Järvelill, Rein Koch, Anto Raukas and Tiit Vaasma

Abstract

The present study discusses results of heavy mineral analyses and radioactivity of beach sediments of Lake Peipsi. Such analyses are commonly done globally, but had not yet been conducted for the fourth largest lake in Europe. The average heavy mineral content in Lake Peipsi beach sediments along the northern and western coast is higher than usual for Estonian coastal and Quaternary sediments. Concomitantly, elevated radioactivity levels have been measured in several places, with the highest concentrations observed at Alajõe (1885.5 Bq/kg), which is over five times more than the recommended limit. The aim of the present study is to find sites with higher radioactivity levels, because the northern coast of Lake Peipsi is a well-known recreational area.

Open access

Akimgali Kenzhegaliev, Sagat Zhumagaliev, Dina Kenzhegalieva and Batyr Orazbayev

Abstract

Prior to the start of experimental oil production in the Kashagan field (northern part of the Caspian Sea), n-alkanes and carboxylic acids contained in samples obtained from bottom sediments in the area of artificial island “D” were investigated by gas chromatography–mass spectrometry. Concentrations of 10 n-alkanes (composed of C10-C13, C15-C20) and 11 carboxylic acids (composed of C6-C12, C14-C16) were identified and measured. Concentrations of individual alkanes and carboxylic acids in bottom sediments of the various samples varied between 0.001 ÷ 0.88 μg/g and 0.001 ÷ 1.94 μg/g, respectively. Mass spectra, in particular the M+ molecular ion peak and the most intense peaks of fragment ions, are given. The present study illustrates the stability of molecular ions to electronic ionisation and the main fragment ions to the total ion current and shows that the initial fragmentation of alkanes implies radical cleavage of C2H5 rather than CH3. All aliphatic monocarboxylic acids studied were characterised by McLafferty rearrangement leading to the formation of F4 cation-radical with m/z 60 and F3 cation-radical with m/z 88 in the case of ethylhexanoic acid. The formation of oxonium ions presents another important aspect of acid fragmentation. Using mass numbers of oxonium ions and rearrangement ions allows determination of the substitution character in α- and β- C atoms. The essence of our approach is to estimate the infiltration of hydrocarbon fluids from the enclosing formation into sea water, comprising an analysis of derivatives of organic compounds in bottom sediments. Thus, concentrations of derived organic molecules can serve as a basis for estimates of the depth at which hydrocarbon fluids leak, i.e., to serve as an auxiliary technique in the search for hydrocarbon deposits and to repair well leaks.

Open access

Izabela Chlost and Roman Cieśliński

Abstract

The present study focuses on two Baltic-type peat bogs in Slowinski National Park, namely that at Żarnowskie and at Kluki, located in the Lake Łebsko catchment and both characterised by a centrally located dome with a very marshy fringe area featuring an emerging marshy coniferous forest (Vaccinio uliginosi-Pinetum). The Żarnowskie bog is under active protection. A total of 24 flow barriers were installed in drainage ditches during the years 2006 and 2007. The purpose of these barriers was to put a halt to water outflow. In addition, 30 hectares of young pine forest were cleared in order to decrease loss of water via evapotranspiration.

Kluki peat bog is only partially protected by Polish law. The lack of efforts to prevent outflow via the canal is due to the fact that the canal is utilised to drain meadows in the vicinity of the village of Łokciowe outside of the national park. Peat formation no longer occurs in this peat bog. The hydrological condition of the bog is catastrophic as a result of its main canal, referred to as Canal C9, which is 2.5 to 3.0 m deep and 10 m wide in places.

Both peat bogs are monitored for fluctuations in groundwater. Research has shown that changes in water levels fluctuate based on season of the year and geographical location, which is illustrated quite well using the two studied peat bogs.

The water retention rate of the Żarnowskie peat bog may be considered fairly high and is likely to improve due to protective measures enabled by Polish environmental laws. The water retention rate of the bog is consistently improving thanks to these measures, fluctuations in water level are small and the water level does not drop under 0.5 m below ground level even under extreme hydrometeorological conditions. This yields optimum conditions for renewed peat formation in this area. One potential threat is the Krakulice peat extraction facility, which is located in the southern part of the bog close to the boundary with the national park.

Open access

Dmitry A. Ruban

Abstract

Possible plate tectonic controls on faunal diversity dynamics have been discussed in the geological literature for around 50 years. The new model of plate tectonic processes is here linked to Jurassic generic diversity (simple α-diversity) of brachiopods. This comparison offers three observations, four hypotheses and three unresolved issues. Most importantly, changes in the global plate root mean square speed coincided with brachiopod diversity dynamics, which can be explained hypothetically by either environmental disturbance triggered by more active plate motion or activity of any process (such as eustasy) tied to plate tectonic mechanisms and with an impact on marine benthic communities. It is also established that global generic diversity dynamics of brachiopods during the Jurassic coincided with the regional picture as established for the Northern Caucasus and the Swiss Jura Alps; this coincidence is difficult to explain with regard to plate tectonics. These and other speculative considerations do not clarify the role of the plate tectonic factor in Jurassic generic diversity dynamics of brachiopods, and, thus, they indicate important issues for further research.

Open access

Alina Chrząstek and Monika Wypych

Abstract

The Coniacian quartz sandstones (Żerkowice Member, Rakowice Wielkie Formation) that crop out at quarries near Czaple-Nowa Wieś Grodziska (North Sudetic Synclinorium) contain a low-diversity assemblage of trace fossils: Gyrochorte isp., Ophiomorpha nodosa Lundgren, 1891, Ophiomorpha isp., Phycodes cf. curvipalmatum (Pollard, 1981), ?Phycodes isp., Planolites cf. beverleyensis (Billings, 1862), Thalassinoides paradoxicus Woodward, 1830 and ?Thalassinoides isp. Moreover, interesting compound burrow systems, here referred to as Thalassinoides-Phycodes cf. palmatus and ?Thalassinoides-Phycodes, were recognised at the Czaple Quarry. Additionally, ?Gyrochorte isp., Phycodes cf. flabellum (Miller and Dyer, 1878) and ?Treptichnus isp. were encountered at correlative levels in the Rakowice Małe Quarry. Some of these ichnotaxa have not been recorded previously from Coniacian sandstones of the Żerkowice Member. Additionally, in slabs of these sandstones, the gastropod Nerinea bicincta Bronn, 1836 and the bivalve Lima haidingeri Zittel, 1866 were found. These interesting finds, in particular the gastropods, were already noted from the study area in the first half of the twentieth century by Scupin (1912–1913). Ethologically, the trace fossil assemblage is represented by domichnia or domichnia/fodinichnia (Ophiomorpha, Thalassinoides), fodinichnia (Phycodes) and pascichnia (Gyrochorte, Planolites). The compound burrow systems (Thalassinoides-Phycodes) are interpreted as dwelling/feeding structures. The possible tracemakers are crustaceans (Ophiomorpha, Thalassinoides) or worm-like animals (annelids and other) (Planolites, ?Phycodes, Gyrochorte and ?Treptichnus). The assemblage of trace fossils is characteristic of the Skolithos ichnofacies and Cruziana ichnofacies, typical of shallow-marine settings. Ichnological studies, as well as the presence of accompanying fossils (bivalves, gastropods), confirm the palaeoenvironmental reconstruction of the Żerkowice Member sandstones by Leszczyński (2010). That author interpreted the Coniacian sandstones as bar and storm deposits laid down in a shallow epicontinental sea (mainly the foreshore-upper shoreface; up to the middle shoreface) under normal oxygenation and salinity, in soft substrate, above fair-weather wave base. The deposition of the Żerkowice Member sandstones is linked to a regression that started after uplift of the southeastern part of the North Sudetic Synclinorium.

Open access

Amir Haji Babaei and Alireza Ganji

Abstract

The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 – Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.

Open access

Jacek Motyka and Ondra Sracek

Open access

Piotr Łapcik

Abstract

Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.