Browse

81 - 90 of 542 items :

  • Biomedical Engineering x
Clear All

Abstract

Aim: To check the feasibility of simultaneous integrated boost (SIB) using a forward planned field in field (FIF) conformal technique for the treatment of carcinoma of the cervix IIIB and compare it dosimetrically with other advanced inverse planning techniques.

Methods: In our study 33 patients of carcinoma of the cervix IIIB were planned for SIB using conformal FIF technique and they were compared with retrospectively planned IMRT and VMAT techniques. SIB using conformal FIF was planned by two different methods.

Results: The results of our study indicate that forward planned Conformal SIB techniques are comparable with inverse planned techniques dosimetrically, in terms of conformity Index, Homogeneity Index, Maximum dose, etc. The ability of FIF SIB plans to produce dose contrast in differential dose accumulation was compared and analyzed and the results were encouraging. To treat an advanced/bulky disease like Carcinoma of the Cervix IIIB in centers with large patient load, utilizing advanced techniques such as IMRT and VMAT is both technically and practically difficult. Despite VMAT’s shorter delivery time, the procedures involved are time-consuming.

Conclusion: Hence forward planned SIB techniques may be used to achieve similar dosimetric effects of IMRT and VMAT techniques without much compromise in plan quality and patient throughput for treating bulky carcinoma of the cervix IIIB cases. However, the clinical results need to be carefully compared and evaluated and reported.

Abstract

Monte Carlo simulation is widely used in emission tomography, in order to assess image reconstruction algorithms and correction techniques, for system optimization, and study the parameters affecting the system performance. In the current study, the performance of the IRI-microPET system was simulated using the GATE Monte Carlo code and a number of performance parameters, including spatial resolution, scatter fraction, sensitivity, RMS contrast, and signal-to-noise ratio, evaluated and compared to the corresponding measured values. The results showed an excellent agreement between simulated and measured data: The experimental and simulated spatial resolutions (radial) for 18F in the center of the AFOV were 1.81 mm and 1.65 mm, respectively. The difference between the experimental and simulated sensitivities of the system was <7%. Simulated and experimental scatter fractions differed less than 9% for the mouse phantom in different timing windows. The validation study of the image quality indicated a good agreement in RMS contrast and signal-to-noise ratio. Also, system performance was compared with the two available commercial scanners which were simulated using GATE code. In conclusion, the assessment of the Monte Carlo modeling of the IRI-microPET system reveals that the GATE code is a flexible and accurate tool for describing the response of an animal PET system.

Abstract

Molecular imaging techniques using nanoparticles have significant potential to be widely used for the detection of various types of cancers. Nowadays, there has been an increased focus on developing novel nanoprobes as molecular imaging contrast enhancement agents in nanobiomedicine. The purpose of this review article is to summarize the use of a variety of nanoprobes and their current achievements in accurate cancer imaging and effective treatment. Nanoprobes are rapidly becoming potential tools for cancer diagnosis by using novel molecular imaging modalities such as Ultrasound (US) imaging, Computerized Tomography (CT), Single Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Optical Imaging. These imaging modalities may facilitate earlier and more accurate diagnosis and staging the most of cancers.

Abstract

103Pd seed is being used for prostate brachytherapy. Additionally, the dose enhancement effect of gold nanoparticles (GNP) has been reported in previous studies. The aim of this study was to characterize the dosimetric effect of gold nanoparticles in brachytherapy with a 103Pd source. Two brachytherapy seeds including 103 Pd source was simulated using MCNPX Monte Carlo code. The seeds’ models were validated by comparing the MC with reported results. Then, GNPs (10 nm in diameter) with a concentration of 7mg Au/g were simulated uniformly inside the prostate of a humanoid computational phantom. Additionally, the dose enhancement factor (DEF) of nanoparticles was calculated for both modeled brachytherapy seeds. A good agreement was found between the MC calculated and the reported dosimetric parameters. For both seeds, an average DEF of 23% was obtained in tumor volume for prostate brachytherapy. The application of GNPs in conjunction with 103Pd seed in brachytherapy can enhance the delivered dose to the tumor and consequently leads to better treatment outcome.

Abstract

This paper describes a method of retrieving stereoscopic medical images from the database that consists of feature extraction, similarity measure, and re-ranking of retrieved images. This method retrieves similar images of the query image from the database and re-ranks them according to the disparity map. The performance is evaluated using the metrics namely average retrieval precision (APR) and average retrieval rate (ARR). According to the performance outcomes, the multi-feature based image retrieval using Mahalanobis distance measure has produced better result compared to other distance measures namely Euclidean, Minkowski, the sum of absolute difference (SAD) and the sum of squared absolute difference (SSAD). Therefore, the stereo image retrieval systems presented has high potential in biomedical image storage and retrieval systems.

Abstract

Non-invasive methods for breast cancer detection in early stages may help to increase the survival rate of patients. This study aimed to evaluate the application of Anti-MUC1 antibody-based iron oxide nanoparticle (SPIONs-C595) which was assessed in vivo as a molecular imaging probe for breast cancer (MCF-7) detection using MRI. Nine groups of female NRC NU/Nu mice (each group of 3), 6 to 8 weeks old were used and MCF-7 cells were injected subcutaneously into both flanks of nude mice. After two weeks the mice received an intravenous injection of different concentrations of SPIONs-C595. The uptake ability of SPIONs-C595 on three-dimension (3D) macrostructure is exploited a modified hanging drop method using Prussian blue for MCF-7 cells. The iron content was measured in liver, kidney, spleen, and tumor. The MR imaging features and biodistribution of nanoprobe was also investigated. The MR images obtained from digested tumor after nanoprobe administration in different time-period revealed that enhancement of T1 and T2 relaxation time. Moreover, the storage stability test was shown great application and no sedimentation of nanoparticles within two months storage at 4°C. Additionally, great validation of SPIONs-C595 on the 3D spheroid of MCF-7 was observed. The biodistribution analysis showed that iron content of the spleen was more than the other studied organs. These results highlighted the feasibility of an in-vivo model for detection of breast cancer MUC1 expression. Current researches are ongoing to further enhancement of relaxation times for classification of MUC1 status using clinical specimens.

Abstract

This study evaluate the anti-inflammatory and analgesic properties of Helianthus annuus Linn. in rats. Methanol extract of Helianthus annuus (HAE) leaf was used in this study. Formalin- and egg-albumin induced-paw edema were used to investigate the anti-inflammatory activities while acetic acid-induced writhing reflex and tail flick models were used to evaluate the analgesic properties. The doses of HAE used were 150, 300 and 600 mg/kg. Acetylsalicylic acid (ASA) was used as reference drug in the anti-inflammatory and writhing reflex models while pentazocine (reference drug) was used in tail flick model. The negative control was dosed 5% tween-20 (10 ml/kg). The HAE exhibited significant (P < 0.05) dose-dependent anti-inflammatory and analgesic activities. At 3 hour (h) post treatment, the HAE (300 mg/kg) produced 33.33% and 32.94% while ASA produced 36.36% and 35.29% reduction in paw volume in the formalin and egg-albumin induced paw edema models respectively when compared with negative control. In the acetic acid-induced writhing reflex, ASA and HAE (600 mg/kg) produced 67.89% and 35.78% reduction in the number of writhing, respectively when compared with the negative control. Pentazocine and HAE (300 mg/kg) caused 67.62% and 35.24% increase in pain reaction time when compared with the negative control. The study affirms the folkloric uses of Helianthus annuus in the management of pain and inflammation.

Abstract

Polyhydroxyalkanoates, microbial polyesters produced in vivo starting from renewable resources, are considered the future materials of choice to compete recalcitrant petro-chemical plastic on the polymer market. In order to make polyhydroxyalkanoates market-fit, (techno)economics of their production need to be improved. Among the multifarious factors affecting costs of polyhydroxyalkanoate production, increased volumetric productivity is of utmost importance. Improving microbial growth kinetics and increasing cell density are strategies leading to a high concentration of catalytically active biomass within a short time; after changing cultivation conditions, these cells can accumulate polyhydroxyalkanoates as intracellular products. The resulting increase of volumetric productivity for polyhydroxyalkanoates can be realized by supplying complex nitrogen sources to growing microbial cultures. In the present study, the impact of different expensive and inexpensive complex nitrogen sources, in particular whey retentate, on the growth and specific growth rates of Hydrogenophaga pseudoflava was tested.

Based on a detailed kinetic process analysis, the study demonstrates that especially whole (not hydrolyzed) whey retentate, an amply available surplus material from dairy industry, displays positive effects on cultivations of H. pseudoflava in defined media (increase of concentration of catalytically active biomass after 26.25 h of cultivation by about 50%, increase of specific growth rate μ from 0.28 to 0.41 1/h during exponential growth), while inhibiting effects (inhibition constant K i = 6.1 g/L) of acidically hydrolyzed whey retentate need to be overcome. Considering the huge amounts of surplus whey accruing especially in Europe, the combined utilization of whey permeate (carbon source) and whey retentate (complex nitrogen source) for biopolyester production can be considered a viable bioeconomic strategy for the next future.

Abstract

The field of biotechnology is large and could be considered tritely as simply the development of technology that is based on biology. It is clear that the concepts of biotechnology can spread to cover many different fields of application and so the future developments in biotechnology will be similarly wide-ranging across many fields of applications. Here we focus onto medical biotechnology and further refine our discussion onto considering aspects of genetics and nanotechnologies that could impact on the development of future biotechnologies in the medical field. These areas that we consider in this brief article provide the basis for a panel discussion on Future Biotechnology at the European Biotechnology Congress held in Valencia, Spain in April 2019.

Abstract

The Prion Protein (PrP) is mostly known for its role in prion diseases, where its misfolding and aggregation can cause fatal neurodegenerative conditions such as the bovine spongiform encephalopathy and human Creutzfeldt–Jakob disease. Physiologically, PrP is involved in several processes including adhesion, proliferation, differentiation and angiogenesis, but the molecular mechanisms behind its role remain unclear. PrP, due to its well-described structure, is known to be able to regulate copper homeostasis; however, copper dyshomeostasis can lead to developmental defects. We investigated PrP-dependent regulation of copper homeostasis in human endothelial cells (HUVEC) using an RNA-interference protocol. PrP knockdown did not influence cell viability in silenced HUVEC (PrPKD) compared to control cells, but significantly increased PrPKD HUVEC cells sensitivity to cytotoxic copper concentrations. A reduction of PrPKD cells reductase activity and copper ions transport capacity was observed. Furthermore, PrPKD-derived spheroids exhibited altered morphogenesis and their derived cells showed a decreased vitality 24 and 48 hours after seeding. PrPKD spheroid-derived cells also showed disrupted tubulogenesis in terms of decreased coverage area, tubule length and total nodes number on matrigel, preserving unaltered VEGF receptors expression levels. Our results highlight PrP physiological role in cellular copper homeostasis and in the angiogenesis of endothelial cells.