Browse

71 - 80 of 142 items :

  • Biochemistry x
  • Chemical Engineering x
Clear All
Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

Abstract

Acid mine drainage (AMD) is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

Open access
Comparison Of Cd And Zn Accumulation In Tissues Of Different Vascular Plants: A Radiometric Study

Abstract

The aim of the present work was to compare the accumulation and translocation of Cd and Zn in plants of tobacco (Nicotiana tabacum L.), celery (Apium graveolens L.), maize (Zea mays L.), giant reed (Arundo donax L.), and alpine pennycress (Noccaea caerulescens L.) under conditions of short-term hydroponic experiments using nutrient solutions spiked with radionuclides 109Cd or 65Zn, and direct gamma-spectrometry. It was found that the time-course of metals accumulation in studied plants was not different in terms of target metal, but it was significantly different on the level of plant species. The highest values of Cd accumulation showed plants of giant reed, whereby the accumulation decreased in the order: giant reed > tobacco > alpine pennycress >> maize and celery. On the basis of concentration ratios (CR) [Me]shoot / [Me]root calculation for both metals, it was found that Cd and Zn were in prevailing part accumulated in the root tissues and only partially accumulated in the shoots, where the amount of accumulated Cd and Zn increased from the oldest developed leaves to the youngest developed leaves. The CR values corresponding to these facts were calculated in the range 0.06 – 0.27 for Cd and for Zn 0.06 – 0.48. In terms of plant species, the CR values obtained for Cd decreased in the order: maize > celery > tobacco and giant reed > alpine pennycress. The similarity between studied objects – individual plant species on the basis of the obtained variables defining Cd or Zn accumulation at different conditions of the experiments as well as the relationships between obtained variables and conditions of the experiments were subjected to multivariate analysis method – cluster analysis (CA). According to the findings and this analysis, it can be expected that plants of tobacco and giant reed will dispose with similar characteristics as plants of alpine pennycress, which are classified as Zn/Cd hyperaccumulators, in terms of Cd or Zn accumulation and other positive parameters for their utilization in phytoremediation processes and techniques.

Open access
Comparison Of Cd2+ Biosorption And Bioaccumulation By Bacteria – A Radiometric Study

Abstract

In this work, bioaccumulation and biosorption characteristics of Cd2+ ions by both dead and living non-growing biomass of gram-positive bacteria Kocuria palustris and Micrococcus luteus isolated from spent nuclear fuel pools were compared. The radioindicator method with radionuclide 109Cd was used to obtain precise and reliable data characterizing Cd compartmentalization in bacterial cells. The following cellular distribution of Cd in living non-growing biomass after 4 h incubation in solutions containing different concentration of Cd2+ ions (100, 250, 500, 750 and 1000 µmol/L) spiked with 109CdCl2 under aeration at 30 °C were obtained: in M. luteus almost 85 % of Cd was localized on the cell surface and 15 % in cytoplasm. Similarly, in K. palustris 83 % of Cd was localized on the cell surface and 17 % in cytoplasm. The data were obtained by gamma spectrometry of extracts and solids after sequential extraction of biomass with 5 mM Ca(NO3)2 and 20 mM EDTA. Biosorption of Cd by non-living bacterial biomass is a rapid process strongly affected by solution pH and as was confirmed by FTIR analysis beside carboxylate ions also other functional groups such as amino and phosphate contribute to Cd binding by bacterial cell surfaces. Maximum sorption capacities Qmax (μmol/g) calculated from the Langmuir isotherm were 444 ± 15 μmol/g for M. luteus and 381 ± 1 μmol/g for K. palustris.

Open access
Effect Of Metal Ions On Triphenylmethane Dye Decolorization By Laccase From Trametes Versicolor

Abstract

The aim of this study was investigate the influence of different metal ions on laccase activity and triphenylmethane dye decolorization by laccase from white-rot fungus Trametes versicolor. Laccase activity was inhibited by monovalent ions (Li+, Na+, K+ and Ag+) but the presence of divalent ions increased laccase activity at the concentration of 10 mmol/l. The effect of metal ions on decolorization of triphenylmethane dyes with different structures namely Bromochlorophenol Blue, Bromophenol Blue, Bromocresol Blue and Phenol Red was tested. The presence of metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Zn2+) slightly decreased triphenylmethane dye decolorization by laccase from T. versicolor except Na+ and Mg2+, which caused the increase of decolorization for all tested dyes. Decolorization of selected dyes showed that the presence of low-molecular-weight compounds is necessary for effective decolorization. Hydroxybenzotriazole (HBT) is the most frequently used. Although HBT belongs to most frequently used redox mediator and generally increase decolorization efficiency, so its presence decreased decolorization percentage of Bromophenol Blue and Bromochlorophenol Blue, the influence of metal ions to dye decolorization by laccase has the similar course with or without presence of redox mediator HBT.

Open access
Interaction Of Calcium Phosphate Nanoparticles With Human Chorionic Gonadotropin Modifies Secondary And Tertiary Protein Structure

Abstract

Calcium phosphate nanoparticles (CaPNP) have good biocompatibility and bioactivity inside human body. In this study, the interaction between CaPNP and human chorionic gonadotropin (hCG) was analyzed to determine the changes in the protein structure in the presence of CaPNP and the quantity of protein adsorbed on the CaPNP surface. The results showed a significant adsorption of hCG on the CaPNP nanoparticle surface. The optimal fit was achieved using the Sips isotherm equation with a maximum adsorption capacity of 68.23 µg/mg. The thermodynamic parameters, including ∆H° and ∆G°, of the adsorption process are positive, whereas ∆S° is negative. The circular dichroism results of the adsorption of hCG on CaPNP showed the changes in its secondary structure; such changes include the decomposition of α-helix strand and the increase in β-pleated sheet and random coil percentages. Fluorescence study indicated minimal changes in the tertiary structure near the microenvironment of the aromatic amino acids such as tyrosine and phenyl alanine caused by the interaction forces between the CaPNP and hCG protein. The desorption process showed that the quantity of the hCG desorbed significantly increases as temperature increases, which indicates the weak forces between hCG and the surface.

Open access
Optimization Of Expression Conditions Of The Acetylesterase CE16 From Hypocrea Jecorina Encoded By A Synthetic Gene And Expressed In Escherichia coli Cells

Abstract

Acetylesterase CE16 was identified as a part of the enzymatic cocktail secreted by fungus Hypocrea jecorina (anamorph: Trichoderma reesei) during its growth on cellulose. Later it was classified as the first member of a newly organized carbohydrate esterase family CE16. Further studies showed that acetylesterase is crucial for complete deacetylation of naturally acetylated xylans enabling their saccharification by xylanases. To study the relationship between structure and function of acetylesterase, highly purified recombinant enzyme produced by Trichoderma reesei Rut C-30 was prepared. The enzyme was composed of 348 amino acid residues from which the 1 - 19 formed a secretion signal peptide. Determined molecular mass of purified recombinant acetylesterase (Aes1) was 45 kDa which was more than molecular mass calculated from amino acid sequence. As it has been proved later, the difference was caused by the enzyme glycosylation. Glycosylation of proteins increases their stability, but it can also be a source of heterogeneity, which might be a problem during crystallization. To make the future X-ray study of the enzyme easier, recombinant non-glycosylated enzyme needed to be prepared. For these purposes, a synthetic gene optimized for protein expression in Escherichia coli was designed and synthetized. The first nonglycosylated acetylesterase obtained by the expression of its synthetic gene in E. coli cells was mostly insoluble or aggregated. Conditions of cell cultivation, induction of gene expression and cells disruption were necessary to optimize. Presently, after optimization of all mentioned steps, the non-glycosylated recombinant CE16 acetylesterase was prepared in the soluble and active form, ready for further downstream procedures, involving protein purification and crystallization.

Open access
Phage Endolysin: A Way To Understand A Binding Function Of C-Terminal Domains A Mini Review

Abstract

Endolysins are bacteriophage-encoded peptidoglycan hydrolases, which are synthesized in the end of phage reproduction cycle, in an infected host cell. Usually, for endolysins from phages that infect Gram-positive bacteria, a modular structure is typical. Therefore, these are composed of at least two separate functional domains: an N-terminal catalytic domain (EAD) and a C-terminal cell wall binding domain (CBD). Specific ligand recognition of CBDs and following peptidoglycan (PG) binding mostly allows a rapid lytic activity of an EAD. Here we briefly characterize phage endolysin CBDs in conjuction with their domain architecture, (non)necessity for the following lytic activity and a high/low specificity of their ligands as well. Such an overall assessment of CBDs may help to find new ways to widen opportunities in their protein design to create ‛designer recombinant endolysins’ with diverse applications.

Open access
Removal Of Contaminants From Aqueous Solutions Using Hop (Humulus Lupulus L.) Agricultural By-Products

Abstract

Agricultural wastes can be used as an alternative to the existing sorbents for the removal of metals or synthetic dyes from contaminated liquids. In this work, the fine powdered biomass of the hop (Humulus lupulus L.) variety Osvald's clone 72 and variety Bohemie as a sorbent for the removal of Cd from aqueous solutions of CdCl2 spiked with radionuclide 109Cd and synthetic dyes thioflavine T (ThT) or methylene blue (MB) from single dye solutions under conditions of batch systems was used. The maximum sorption capacity Q = 264 µmol Cd/g (d.w.) was found in the case of the leaf biomass of hop (H. lupulus L.) variety Osvald's clone 72 at the initial concentration of CdCl2 10,000 µmol/dm3, whereby the sorption capacity decreased in the order Qleaves : Qstems : Qroots = 1.0 : 0.8 : 0.7. The sorbed amount of Cd was removed from the hop biomass with the following increasing desorption efficiency of the extraction reagents: deionised H2O << 0.1 mol/dm3 HCl ≤ 0.1 mol/dm3 EDTA-Na2. Similarly as in the case of Cd sorption, the kinetics of ThT and MB sorption by the leaf biomass of the hop (H. lupulus L.) variety Bohemie were also showed as two-phase processes. The maximum sorption of ThT approx. Q = 19 mg/g (d.w.) and MB approx. Q = 70 mg/g (d.w.) were found within the range of the initial values of pH 4 – 7. The sorption of both dyes by the leaf biomass from single dye solutions decreased with increasing biomass concentration and on the other hand increased with increasing the initial concentrations of ThT or MB. The process of ThT and MB sorption was better described by the Langmuir model than the Freundlich model of sorption isotherm. From the obtained values of Qmax, it was found that in the case of MB the dried leaf biomass showed more than 2-times higher sorption capacity (Qmax = 184 mg/g; d.w.) in comparison with the value predicted for ThT. Obtained results suggest that dried plant biomass of hop (H. lupulus L.) as agricultural by-products can be used as a potential sorbent for both types of studied contaminants.

Open access
Assessment Of Biologically Synthesized Ag Nanoparticles Toxicity Against E. coli, Staphylococcus aureus, Parachlorella kessleri And Sinapis alba

Abstract

In general, Ag+ ions and AgNPs are considered to be the most toxic for bacterial cells and less toxic for higher organisms. In the present work inhibitory effects of biologically prepared silver nanoparticles on the growth of bacteria E. coli CCM 3954 and Staphylococcus aureus CCM 3953, green microscopic alga Parachlorella kessleri LARG/1 and seed germination and root growth of plant Sinapis alba seeds were investigated. Surprisingly, silver nanoparticles showed much stronger inhibitory effects on plant seed germination and root growth than on the bacterial growth. At concentration of 75 mg/l AgNPs both seed germination and root growth of Sinapis alba was inhibited whereas inhibition of the growth of E. coli and S. aureus was observed at >195 mg/l. Growth inhibition of alga Parachlorella kessleri was recorded at 300 mg/l AgNPs concentration. The inhibitory effect of silver ions was much higher compared to silver nanoparticles. Even 20 mg/l concentration of Ag+ ions inhibited the root growth and concentration > 45 mg/l inhibited germination of Sinapis alba seeds. Inhibition zones in both studied bacteria were found at concentration > 140 mg/l.

Open access
Biogeochemical Interactions In The Application Of Biotechnological Strategies To Marine Sediments Contaminated With Metals

Abstract

Sediment contamination in coastal areas with high anthropogenic pressure is a widespread environmental problem. Metal contaminants are of particular concern, since they are persistent and cannot be degraded. Microorganisms can influence metal mobility in the sediment by several direct and indirect processes. However, the actual fate of metals in the environment is not easily predictable and several biogeochemical constraints affect their behaviour. In addition, the geochemical characteristics of the sediment play an important role and the general assumptions for soils or freshwater sediments cannot be extended to marine sediments. In this paper we analysed the correlation between metal mobility and main geochemical properties of the sediment. Although the prediction of metal fate in sediment environment, both for ex-situ bioleaching treatments and in-situ biostimulation strategies, appears to require metal-specific and site-specific tools, we found that TOM and pH are likely the main variables in describing and predicting Zn behaviour. Arsenic solubilisation/increase in mobility appears to correlate positively with carbonate content. Cd, Pb and Ni appear to require multivariate and/or non-linear approaches.

Open access