Browse

You are looking at 61 - 70 of 742 items for :

  • Technical and Applied Physics x
Clear All
Open access

Déte van Eeden and Freek C.P. du Plessis

Abstract

Monte Carlo (MC) simulation is the gold standard for dose calculation. An accurate mathematical source model can be used for the radiation beams. Source models can consist of sub-sources or fewer sources with data that need to be measured. This can speed up treatment plan verification without the need for a full simulation of the radiation treatment machine.

Aims: This study aimed to construct a novel hybrid source model for 6 MV photon beams for an Elekta Synergy accelerator and to commission it against measured beam data and treatments plans.

Methods and Material: The model comprised of a circular photon and planar electron contamination source. The modified Schiff formula provided off-axis variable bremsstrahlung spectra. Collimation and scatter were modelled with error functions. An exponential function modelled the transmitted fluence through the collimators. The source model was commissioned by comparing simulated and measured MC data. Dose data included profiles, depth dose and film measurements in a Rando phantom. Field sizes ranged from 1 × 1 cm2 to 40 × 40 cm2.

Results: Regular, wedged and asymmetrical fields could be modelled within 1.5% or 1.5 mm. More than 95% of all points lie within 3% or 3 mm for the multi-leaf collimators contours data. A gamma criterion of 3% or 3 mm was met for a complex treatment case.

Conclusions: The two sub-source model replicated clinical 6 MV Elekta Synergy photons beams and could calculate the dose accurately for conformal treatments in complex geometries such as a head-and-neck case.

Open access

E. Klotins

Abstract

The article presents a quantum kinetic framework to study interacting quan¬tum systems. Having the constituting model Hamiltonians of two-band semiconductor and the photoexcited electron-hole pair, their quantum kinetic evolution has been revi-sited. Solution to this nonlinear problem of electron-hole interaction is obtained making use of the self-consistency loop between the densities of photoexcited electrons and holes and the pairwise interaction terms in the constituting model Hamiltonians. In the leading order, this approach supports the required isomorphism between the pairwise interaction and the birth and annihilation operators of the photoexcited electrons and holes as a desirable property. The approach implies the Hilbert space and the tensor product mathematical techniques as an appropriate generalization of the noninteracting electron-hole pair toward several-body systems.

Open access

Duong Thanh Tai, Luong Thi Oanh, Nguyen Dong Son and Truong Thi Hong Loan

Abstract

Introduction: Jaws-Only Intensity modulated radiation therapy (JO-IMRT) is a technique uses the collimator jaws of the linear accelerator (LINAC) to delivery of complex intensity patterns. In previous studies, pretreatment patient specific quality assurance for those JO-IMRT were also performed using ionization chamber, MapCHECK2, and Octavius 4D and good agreements were shown. The aim of this study is to further verify JO-IMRT plans in 2 different cases: one with the gantry angle set equal to beam angle as in the plans and the other with gantry angle set to zero degree.

Materials and Methods: Twenty-five JO-IMRT, previously verified, were executed twice for each plan. The first one used a real gantry angle, and the second one used a 0° gantry angle. Measurements were performed using Octavius 4D 1500.

Results: The results were analyzed using Verisoft software. The results show that the Gamma average was 97.32 ± 2.21% for IMRT with a 0° gantry angle and 94.72 ± 2.67% for IMRT with a true gantry angle.

Conclusion: In both cases, gamma index of more than 90% were found for all of our 25 JO-IMRT treatment plans.

Open access

A. Serebryakov, E. Kamolins, K. Gulbis and K. Sejejs

Abstract

The authors consider several tens of rotor tooth and slot profiles for the inductor electric machine in order to gain the maximum EMF of the armature winding at the minimum of highest harmonics, owing to which the specific power and efficiency of the machine can be raised.

The research considers usage of analytical methodology and finite element method (FEM), where the latter includes magnetic saturation and actual magnetic field line distribution.

The main data of both calculations are summarised in the results of the study. From the obtained results, it can be concluded that, in most cases, the analytical method is not applicable to the qualitative determination of the highest harmonic content of the EMF, since the plane of the magnetic field lines does not close in parallel and their distribution is directly related to the configuration of the teeth zone.

The possibility of using the inductor generators for direct connection to the grid is demonstrated in the study.

Open access

Tsviatko V. Rangelov, Petia S. Dineva and George D. Manolis

Abstract

The aim of this study is to develop an efficient numerical technique using the non-hypersingular, traction boundary integral equation method (BIEM) for solving wave propagation problems in an anisotropic, viscoelastic plane with cracks. The methodology can be extended from the macro-scale with certain modifications to the nano-scale. Furthermore, the proposed approach can be applied to any type of anisotropic material insofar as the BIEM formulation is based on the fundamental solution of the governing wave equation derived for the case of general anisotropy. The following examples are solved: (i) a straight crack in a viscoelastic orthotropic plane, and (ii) a blunt nano-crack inside a material of the same type. The mathematical modelling effort starts from linear fracture mechanics, and adds the fractional derivative concept for viscoelastic wave propagation, plus the surface elasticity model of M. E. Gurtin and A. I. Murdoch, which leads to nonclassical boundary conditions at the nano-scale. Conditions of plane strain are assumed to hold. Following verification of the numerical scheme through comparison studies, further numerical simulations serve to investigate the dependence of the stress intensity factor (SIF) and of the stress concentration factor (SCF) that develop in a cracked inhomogeneous plane on (i) the degree of anisotropy, (ii) the presence of viscoelasticity, (iii) the size effect with the associated surface elasticity phenomena, and (iv) finally the type of the dynamic disturbance propagating through the bulk material.

Open access

D. Belakova, A. Seile, S. Kukle and T. Plamus

Abstract

Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).

Open access

A. Dychko, N. Remez, I. Opolinskyi, S. Kraychuk, N. Ostapchuk and L. Yevtieieva

Abstract

Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto’s model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

Open access

D. Merkulovs, O. Vilitis and V. Kozlovs

Abstract

The new optical scheme of refractometer with temperature stabilisation 10−2 °C is developed, which allows measuring a refractive index of the sample with accuracy not worse than 10−5; dependence of refraction index on concentration of SiO2 nanoparticles in liquid suspension is obtained within the framework of the research.

Open access

V. Bobinaite and I. Konstantinaviciute

Abstract

The paper aims at demonstrating the relevance of financing instruments, their terms and financing strategies in relation to the cost of wind power production and the ability of wind power plant (PP) to participate in the electricity market in Lithuania. The extended approach to the Levelized Cost of Energy (LCOE) is applied. The feature of the extended approach lies in considering the lifetime cost and revenue received from the support measures. The research results have substantiated the relevance of financing instruments, their terms and strategies in relation to their impact on the LCOE and competitiveness of wind PP. It has been found that financing of wind PP through the traditional financing instruments (simple shares and bank loans) makes use of venture capital and bonds coming even in the absence of any support. It has been estimated that strategies consisting of different proportions of hard and soft loans, bonds, own and venture capital result in the average LCOE of 5.1–5.7 EURct/kWh (2000 kW), when the expected electricity selling price is 5.4 EURct/kWh. The financing strategies with higher shares of equity could impact by around 6 % higher LCOE compared to the strategies encompassing higher shares of debt. However, seeking to motivate venture capitalists, bond holders or other new financiers entering the wind power sector, support measures (feed-in tariff or investment subsidy) are relevant in case of 250 kW wind PP. It has been estimated that under the unsupported financing strategies, the average LCOE of 250 kW wind PP will be 7.8–8.8 EURct/kWh, but it will reduce by around 50 % if feed-in tariff or 50 % investment subsidy is applied.

Open access

G. Zaleskis and I. Rankis

Abstract

According to the strategical objectives of the use of the renewable energy sources, it is important to minimise energy consumption of conventional power grid by effective use of the renewable energy sources and provi-ding stable operation of the consumers. The main aim of research is to develop technical solutions that can provide effective operation of the wind generators in the small power DC microgrids, which also means wind energy conversion at as wider generator speed range as possible.