Browse

61 - 70 of 112 items :

  • Materials Processing x
  • Materials Sciences x
Clear All
Open loop control of piezoelectric tube transducer

Abstract

This paper is focused on the open loop control of a piezoelectric tube actuator, hindered by a strong hysteresis. The actuator was distinguished with 22 % hysteresis, which hinders the positioning of piezoelectric actuator. One of the possible ways to solve this problem is application of an accurate analytical inversed model of the hysteresis in the control loop. In this paper generalized Prandtl-Ishlinskii model was used for both modeling and open loop control of the piezoelectric actuator. Achieved modeling error does not exceed max. 2.34 % of the whole range of tube deflection. Finally, the inverse hysteresis model was applied to the control line of the tube. For the same input signal (damped sine 0.2 Hz) as for the model estimation the positioning error was max. 4.6 % of the tube deflection. Additionally, for a verification reason three different complex harmonic functions were applied. For the verification functions, still a good positioning was obtained with positioning error of max.4.56 %, 6.75 %and5.6%of the tube deflection.

Open access
Prediction Models for Thermal Conductivity of Cement-based Composites

Abstract

Cement-based materials are the most consumed materials in the construction industry. Low or high thermal conductive cement-based materials are of interest in applications such as embedded floor heating systems, building envelopes or structural elements. This paper describes prediction models for thermal conductivity of cementitious composites by considering different variables such as constituent materials, porosity and moisture content. The presented prediction models may be used for thermal conductivity based mix design of cementitious materials. Based on the desired accuracy, different solutions are proposed.

Open access
Reduction of Radon Gas in Concrete Using Admixtures and Additives

Abstract

The second largest cause of lung cancer is related to radon (222Rn) and its progenies in our environment. Building materials, such as concrete, contribute to the production of radon gas through the natural decay of 238U from its constituents. The Swedish Cement and Concrete Research Institute (CBI) has examined three concrete recipes where only an additive as well as fly ash were added as single constituents to a reference recipe and compared to a reference concrete. The inputs of an additive as well as a supplementary cementitious material (fly ash) were made as a mean to investigate their potential influence on the radon exhalation rates of the concrete. Measurements were performed with an ATMOS 33 ionizing pulsation chamber for at least five different occasions for each recipe during a 22 month period. The results indicate a reduction of the exhalation rate by approximately 30-35 % for each altered recipe. This means roughly 1.5-2 mSv per year decrease in effective dose to a human using an additive or a supplementary cementitious material such as fly ash in relation to the investigated standard concrete.

Open access
Testing of beveled crimp connections made on a prototype stand

Abstract

The purpose of this study is to form and test inseparable tight joints, commonly used in the construction of heat exchangers, by crimping operation on designed prototype stand. Crimped joints are made by tools in form of cones with two types of shapes, each of the designed tools have got identical forming angle. This study uses two types of connecting blocks and plates, differing in diameters of hole and flange. Elaboration contains a case study of joints being made by the stand, which in addition to the crimping operations for some cases were glued or brazed. The article presents the features of the formed joints, by examining them by destructive testing: Micrography, tensile strength test, and non-destructive testing: Leakage test. The examined elements have been made of aluminum 6060, which is well suited to indirect or direct operations of forming joints for all kinds of coolers or condensers. Elaborated tests and studies in this study allowed to state, that joining the connection block to plate with the small diameter, was more energy-consuming than in sample sets with bigger diameter, use of glue increasing the strength of the joints by 20%, significant strength increase can be obtained after mechanical clinching with brazing operation or modification of geometrical shape of the jaws

Open access
Towards the Understanding of the pH Dependency of the Chloride Binding of Portland Cement Pastes

Abstract

Hydrated Portland cement paste exposed to a NaCl solution was acidified by adding HCl in small steps, gradually lowering the pH. The chloride binding of the cement paste changed as a function of the pH. For the range of pH from 13.2 to 12.2, decreasing pH resulted in a considerable increase in the chloride binding. At a pH of 11, the cement paste showed almost no chloride binding. In order to explain the changes in chloride binding upon lowering the pH, the phase assemblage was investigated with SEM-EDS, TGA and XRD and compared to a thermodynamic modelling.

Open access
Analysis of the Effect of Ultrasonic Welding on Microstructure

Abstract

Ultrasonic welding is very useful for joining thin metal sheets [1, 2]. The effect of ultrasound on microstructure is currently not well understood because the changes produced depend very much on the welding parameters and the properties of the metal being considered. Thin sheets formed by cold rolling acquire a special grain structure. During the welding process the heat produced causes recrystallization; even where heat is not applied in the joining process the recrystallization process alters the mechanical properties within the heat affected zone (HAZ). The mechanical properties of the welded samples depend on the microstructure. In this work we analyse the ultrasonic welding effect on the joint and the HAZ [3, 4].

Open access
Chemical Durability of Uranium Oxide Containing Glasses

Abstract

ZrO2 doped Na-Ba-borosilicate glasses suitable as matrix materials for HLW immobilization were synthesized and corrosion behaviour was investigated in different aqueous media. Hydrolytic stability is increased with the doping level until 5 mol %; above this value the glass vitrification tendency is strongly intensified. Unexpectedly, ZrO2 doping diminished the corrosion stability in 1M HCl solution, and low ZrO2 content showed a low corrosion resistance in 1M Na2CO3 solution also. Doping effect was negligible in case of synthetic seawater. The glass structure is significantly stabilized by the integration of the 30% UO3 added.

Open access
Construction of Albumin-Coated 3D Allograft Based on Cone-beam CT Images

Abstract

The 3D block products presented in this study are used in dental surgery to provide bone replacement for patients who do not possess a sufficient amount of bone tissue for implantation. If dental implants are supported by a proper amount of allografts, the mastication ability of the patient can be totally restored. The required bone replacement for the insertion of dental implants is a reconstruction utilising lyophilized human bone tissue treated with alveolar and mandibular odontological albumin. This study puts emphasis on the analysis, planning and processing of CBCT images, and on the machining and production three-dimensional albumin-coated allograft. The study also extends to former and current bone grafting techniques, and provides a review on BoneAlbumin and the selection of suitable materials. This paper also investigates the domestic and international bone grafting market. Furthermore, it contains a case study and conclusions.

Open access
Diagnosis of edge condition based on force measurement during milling of composites

Abstract

The present paper presents comparative results of the forecasting of a cutting tool wear with the application of different methods of diagnostic deduction based on the measurement of cutting force components. The research was carried out during the milling of the Duralcan F3S.10S aluminum-ceramic composite. Prediction of the toolwear was based on one variable, two variables regression Multilayer Perceptron(MLP)and Radial Basis Function(RBF)neural networks. Forecasting the condition of the cutting tool on the basis of cutting forces has yielded very satisfactory results.

Open access
Effect of Expansion Pressure on the Drug Eluting Coating and the Corrosion Characteristics of Coronary Stents

Abstract

During implantation, stents are delivered in crimped state to the narrowed lesion, where they are expanded to the desired size by the balloon. Due to insufficient size selection or high resistance to plaque, the stent is often widened by the expansion pressure to a level greater than the nominal pressure specified by the manufacturer. Depending on the degree of overpressure, the nominal diameter of the stent may change by several tenths of a millimetre. Numerous studies have dealt with the physiological effects of overexposure and stenogenic stress, but so far no studies have been carried out to investigate the stent coating and corrosion properties of the stent. In our research a widely used drug-eluting, platinum-chromium alloyed steel stent was observed with an inflation pressure of 12 and 18 bar. Scanning electron microscopy revealed lesions of the coating and potentiodynamic tests were performed to determine the corrosion rate.

Open access