Browse

61 - 70 of 962 items :

  • Materials Characterization and Properties x
  • Materials Sciences x
Clear All
Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation

Abstract

Thin films of titanium oxides, titanium oxynitrides and titanium nitrides were deposited on glass substrates by the methods of direct current (DC) and pulsed magnetron sputtering and cathodic arc evaporation. Phase analysis of the deposited films by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) showed the presence of phases with various Ti oxidative states, which indicated a high concentration of oxygen vacancies. The films morphology was investigated by scanning electron microscopy (SEM). Investigations of the films wettability, either with water or ethylene glycol, showed that it depends directly on the concentration of oxygen vacancies. The wettability mechanism was particularly discussed.

Open access
Aging effect of the precursor solution on the structural, morphological and opto-electrical properties of spray deposited CdO thin films

Abstract

Nanostructured CdO thin films have been prepared on glass substrates by spray pyrolysis technique using perfume atomizer from fresh and aged (1, 2, 3 and 4 days) precursor solutions. XRD studies confirm that all the films exhibit cubic crystal structure with a (1 1 1) preferential orientation. The preferential orientation factor f(1 1 1) increases with an increase in aging the period of precursor solution. The 2θ value of the (1 1 1) plane shifts towards lower Bragg angles with aging inferring an expansion in the lattice volume of the aged films. Increased crystallite size is observed for the 3-days aged film for which minimum strain and dislocation density values are obtained. Optical transparency increases with an increase in aging period of the precursor solution and the optical band gap exhibits a red shift from 2.48 eV to 2.32 eV. Minimum resistivity of 0.78 × 10−2 Ω·cm is observed for the CdO film prepared from 3-days aged solution. The obtained results infer that the CdO film prepared from 3-days aged solution exhibits better physical properties than the others.

Open access
CdO-Fe3O4 nanocomposite with enhanced magnetic and photocatalytic properties

Abstract

Pure CdO nanopowder and CdO-Fe3O4 nanocomposite were synthesized by a cost effective chemical method, and the samples were characterized by XRD, SEM, TEM, FT-IR, UV-Vis-NIR and PL. Also, magnetic and photocatalytic properties of the synthesized samples were studied. XRD patterns of the composite confirm the presence of diffraction peaks related to both CdO and Fe3O4. EDX spectrum confirms the presence of the elements Cd, O and Fe in the composite. Peaks related to Cd–O and Fe–O bonds were observed respectively at 688 cm−1 and 592 cm−1 in the FT-IR spectrum. The paramagnetic behavior of pure CdO becomes ferromagnetic when coupled with Fe3O4. The composite exhibited a high photodegradation efficiency of 92.85 % against the degradation of methylene blue dye under visible light radiation.

Open access
Controlling of optical band gap of the CdO films by zinc oxide

Abstract

In this study, CdZnO films prepared at different ratios of dopants (CdO:ZnO = 5:5, CdO:ZnO = 6:4, and CdO:ZnO = 8:2) were coated on glass surface by using the sol-gel spin coating technique. After this process, surface structure and optical properties of the CdZnO films was investigated by atomic force microscopy (AFM) and UV-Vis spectroscopy. The surface structure of the CdZnO films depended on the content of ZnO and CdO in the films. Low percentage of CdO films were very similar to the ZnO film but higher amount of CdO resuted in granular structures together with pure structure of ZnO in the films. Eg values of produced CdZnOs depended on the additions of CdO and ZnO. The obtained Eg values of the produced CdO:ZnO = 5:5 (S3), CdO:ZnO = 6:4 (S4), and CdO:ZnO = 8:2 (S5) films are 2.5 eV, 2.49 eV, and 2.4 eV, respectively.

Open access
Determination of growth kinetics and size dependent structural, morphological, optical characteristics of sol-gel derived silica nanoparticles in silica matrix

Abstract

Nanocomposite silica thin films made using the sol-gel method were studied. The nano-silica films were prepared using a mixture of tetraethyl orthosilicate (TEOS), deionized water, ethanol, and ammonia solution. To control the growth of the particles inside the film, the nanocomposite silica film was prepared using a mixture of the nano-silica sol and the silica sol. The change in the particle size with the heat treatment temperature ranging from 450 °C to 1100 °C was investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), NKD (refractive index-N, extinction coefficient-K, and thickness-D) and ultraviolet-visible (UV-Vis) spectrophotometry were used for characterization purposes. The XRD studies showed that the nano-silica thin films were amorphous at all annealing temperatures except for 1100 °C. The_-cristobalite crystal structure formed at the annealing temperature of 1100 °C. Optical parameters, such as refractive indices and extinction coefficients, were obtained using the NKD analyzer with respect to the annealing temperature of the films. The activation energy and enthalpy of the nanocomposite silica film were evaluated as 22.3 kJ/mol and 14.7 kJ/mol, respectively. The cut-off wavelength values were calculated by means of extrapolation of the absorbance spectra estimated using the UV-Vis spectroscopy measurements. A red shift in the absorption threshold of the nanocomposite silica films indicated that the size of the silica nanoparticles increased with an increase of the annealing temperatures from 450 °C to 900 °C, and this confirms the quantum confinement effect in the nanoparticles.

Open access
Effect of Mn content in Fe(1−x)MnxB (x = 0, 0.25, 0.5, 0.75 and 1) on physical properties - ab initio calculations

Abstract

Structural, electronic, intrinsic magnetic, anisotropic elastic properties, sound velocities and Debye temperature of Fe1−xMnx B (x = 0, 0.25, 0.5, 0.75, 1) transition metal monoborides have been studied by first-principles calculations within the method of virtual crystal approximation (VCA) based on density-functional theory (DFT) through generalized gradient approximation (GGA). The average magnetic moment per cell increased with increasing of Mn content, which could be associated with the relationship between the composition and magnetic properties. The observed magnetic behavior of Fe1−xMnx B compounds can be explained by Stoner model. Lattice parameters and Debye temperature agree well with the experimental values. Furthermore, we have plotted three-dimensional (3D) surfaces and planar contours of the directional dependent Young and bulk moduli of the compounds on several crystallographic planes, to reveal their elastic anisotropy versus Mn content (x) in Fe1−xMnx B.

Open access
The effect of oxidation process on graphene oxide fiber properties

Abstract

Graphene, a carbon allotrope, became a significant area of research with its superior electrical, mechanical, optical properties, etc. There are several methods to obtain graphene oxide from graphite, one of which is the Hummers method. In this study, several modifications and pre-treatments preceding the Hummers method have been employed. Three different graphene oxide fibers have been produced by three different procedures, i.e. fibers obtained by Hummers method with pre-oxidation step, modified Hummers method and modified Hummers method with pre-oxidation step. It has been observed that pre-oxidation has a significant effect on graphene oxide fiber properties produced by wet spinning process (coagulation). Modified Hummers method without pre-oxidation leads to the highest breaking strength and breaking elongation. Reduced fiber linear density, breaking strength and breaking elongation together with increased crimp were observed in graphene fiber due to the addition of pre-oxidation step.

Open access
Effect of pellet size and additive on silica carbothermic reduction in microwave furnace for solar grade silicon

Abstract

Silicon as a raw material for solar cells can be produced by numerous methods. The carbothermic reduction of silica using electric arc furnace is the most widely used process in silicon industry. This paper presents a new approach to produce solar grade silicon using microwave furnace. Pellets of different sizes were prepared from a mixture of silica and carbon using water and polyvinyl alcohol as binder agents. Raman spectra indicated a peak at about 515 cm−1 attributed to silicon in the pellets prepared with polyvinyl alcohol, and peaks at about 523 cm−1 and 794 cm−1 attributed to silicon and silicon carbide, in the pellets prepared with water. The pellet size affects the absorption of microwave energy emitted from the magnetrons. Polyvinyl alcohol as a binder agent is promising for the production of silicon using microwave furnace.

Open access
Effect of Sm concentration on optical and electrical properties of CdSe nanocrystalline thin film

Abstract

Present paper reports optical and electrical properties of samarium doped CdSe nanocrystalline thin film which was grown on a glass substrate by chemical bath deposition method (CBD). X-ray diffraction (XRD) analysis revealed that the deposited films were nanocrystalline with sphalerite cubic structure. The average crystallite size calculated from FWHM of XRD peaks was found to be 10.11 nm. The bandgap of the Sm doped CdSe nanocrystalline thin films was calculated to be 1.91 eV to 2.22 eV. The optical absorption edge of undoped (pure) and Sm doped CdSe films was obtained between 650 nm to 640 nm showing blue shift as compared to bulk CdSe. Sm doping further enhanced the photoconductivity of these films. The I-V characteristic confirmed the suitability of prepared films for photosensor applications.

Open access
Estimation of Magnetic Contact Location and Depth of Magnetic Sources in a Sedimentary Formation

Abstract

The aeromagnetic data of Idogo, Southwestern Nigeria, have been used to study the lithology and to determine the magnetic source parameters within Idogo and its environs. Idogo lies between latitudes 6°30′N and 7°00′N and between longitudes 2°30′E and 3°00′E. The magnetic anomaly map, the regional geology, the analytic signal and the local wavenumber were used to identify the nature and depth of the magnetic sources in the region. Data enhancement was carried out to delineate the residual features relative to the strong regional gradients and intense anomalies due to the basin features. The estimated basement depth using the horizontal gradient method revealed depths ranging between 0.55 km and 2.49 km, while the analytic signal amplitude and local wavenumber methods estimated depth to the magnetic sources to range from 0.57 km to 4.22 km and 0.96 km to 2.43 km, respectively. Depth computations suggested the presence of both shallow and deep sources. The total magnetic intensity values ranged from 3.1 nT to 108.3 nT. The area shows magnetic closures of various sizes in different parts of the area trending West, with prominence at the centre and distributed East–West.

Open access