Browse

61 - 70 of 1,095 items :

  • Functional and Smart Materials x
  • Materials Sciences x
Clear All
Determination of growth kinetics and size dependent structural, morphological, optical characteristics of sol-gel derived silica nanoparticles in silica matrix

Abstract

Nanocomposite silica thin films made using the sol-gel method were studied. The nano-silica films were prepared using a mixture of tetraethyl orthosilicate (TEOS), deionized water, ethanol, and ammonia solution. To control the growth of the particles inside the film, the nanocomposite silica film was prepared using a mixture of the nano-silica sol and the silica sol. The change in the particle size with the heat treatment temperature ranging from 450 °C to 1100 °C was investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), NKD (refractive index-N, extinction coefficient-K, and thickness-D) and ultraviolet-visible (UV-Vis) spectrophotometry were used for characterization purposes. The XRD studies showed that the nano-silica thin films were amorphous at all annealing temperatures except for 1100 °C. The_-cristobalite crystal structure formed at the annealing temperature of 1100 °C. Optical parameters, such as refractive indices and extinction coefficients, were obtained using the NKD analyzer with respect to the annealing temperature of the films. The activation energy and enthalpy of the nanocomposite silica film were evaluated as 22.3 kJ/mol and 14.7 kJ/mol, respectively. The cut-off wavelength values were calculated by means of extrapolation of the absorbance spectra estimated using the UV-Vis spectroscopy measurements. A red shift in the absorption threshold of the nanocomposite silica films indicated that the size of the silica nanoparticles increased with an increase of the annealing temperatures from 450 °C to 900 °C, and this confirms the quantum confinement effect in the nanoparticles.

Open access
Effect of Mn content in Fe(1−x)MnxB (x = 0, 0.25, 0.5, 0.75 and 1) on physical properties - ab initio calculations

Abstract

Structural, electronic, intrinsic magnetic, anisotropic elastic properties, sound velocities and Debye temperature of Fe1−xMnx B (x = 0, 0.25, 0.5, 0.75, 1) transition metal monoborides have been studied by first-principles calculations within the method of virtual crystal approximation (VCA) based on density-functional theory (DFT) through generalized gradient approximation (GGA). The average magnetic moment per cell increased with increasing of Mn content, which could be associated with the relationship between the composition and magnetic properties. The observed magnetic behavior of Fe1−xMnx B compounds can be explained by Stoner model. Lattice parameters and Debye temperature agree well with the experimental values. Furthermore, we have plotted three-dimensional (3D) surfaces and planar contours of the directional dependent Young and bulk moduli of the compounds on several crystallographic planes, to reveal their elastic anisotropy versus Mn content (x) in Fe1−xMnx B.

Open access
The effect of oxidation process on graphene oxide fiber properties

Abstract

Graphene, a carbon allotrope, became a significant area of research with its superior electrical, mechanical, optical properties, etc. There are several methods to obtain graphene oxide from graphite, one of which is the Hummers method. In this study, several modifications and pre-treatments preceding the Hummers method have been employed. Three different graphene oxide fibers have been produced by three different procedures, i.e. fibers obtained by Hummers method with pre-oxidation step, modified Hummers method and modified Hummers method with pre-oxidation step. It has been observed that pre-oxidation has a significant effect on graphene oxide fiber properties produced by wet spinning process (coagulation). Modified Hummers method without pre-oxidation leads to the highest breaking strength and breaking elongation. Reduced fiber linear density, breaking strength and breaking elongation together with increased crimp were observed in graphene fiber due to the addition of pre-oxidation step.

Open access
Effect of pellet size and additive on silica carbothermic reduction in microwave furnace for solar grade silicon

Abstract

Silicon as a raw material for solar cells can be produced by numerous methods. The carbothermic reduction of silica using electric arc furnace is the most widely used process in silicon industry. This paper presents a new approach to produce solar grade silicon using microwave furnace. Pellets of different sizes were prepared from a mixture of silica and carbon using water and polyvinyl alcohol as binder agents. Raman spectra indicated a peak at about 515 cm−1 attributed to silicon in the pellets prepared with polyvinyl alcohol, and peaks at about 523 cm−1 and 794 cm−1 attributed to silicon and silicon carbide, in the pellets prepared with water. The pellet size affects the absorption of microwave energy emitted from the magnetrons. Polyvinyl alcohol as a binder agent is promising for the production of silicon using microwave furnace.

Open access
Effect of Sm concentration on optical and electrical properties of CdSe nanocrystalline thin film

Abstract

Present paper reports optical and electrical properties of samarium doped CdSe nanocrystalline thin film which was grown on a glass substrate by chemical bath deposition method (CBD). X-ray diffraction (XRD) analysis revealed that the deposited films were nanocrystalline with sphalerite cubic structure. The average crystallite size calculated from FWHM of XRD peaks was found to be 10.11 nm. The bandgap of the Sm doped CdSe nanocrystalline thin films was calculated to be 1.91 eV to 2.22 eV. The optical absorption edge of undoped (pure) and Sm doped CdSe films was obtained between 650 nm to 640 nm showing blue shift as compared to bulk CdSe. Sm doping further enhanced the photoconductivity of these films. The I-V characteristic confirmed the suitability of prepared films for photosensor applications.

Open access
Effect of The Degree of Cold Work and Sensitization Time on Intergranular Corrosion Behavior in Austenitic Stainless Steel

Abstract

Present paper deals with the influence of a wide range of cold rolling (5, 10, 15 and maximum 40% cold deformation) and the sensitization time (aging at 700°C for 0.12, 0.5, 1, 4, 16 and 32 hours) on intergranular corrosion (IGC). Intergranular corrosion of commercial stainless steel type X6CrNiTi18-10 (1.4541, AISI 321) is frequently observed in several process environments. These localized attacks are normally attributed to the carbide precipitation and concomitant depletion of chromium near grain boundary due to steel exposure to sensitization temperature. Such undesirable microchemistry is expected to be changed further if the material undergoes deformation prior to sensitization. The consequences of deformation on IGC have been investigated by using EN ISO 3651-1methods (Huey test – Corrosion test in nitric acid medium by measurement of loss in mass). Introducing deformation to the investigated stainless steel seems to change the kinetics of carbide precipitation M23C6 and thereby changes it resistance to IGC. Cold deformation before sensitization reduces the intensity of intergranular corrosion of this steel. The deformed structure created during the cold work process, numerous slip planes and the twins boundaries are just like the grain boundaries and the places where the chromium carbides preferentially precipitates. Due to the more evenly occurring precipitation processes within the whole deformed grains, there is no phenomenon of local grain boundary carbide precipitation, and thus there is no decrease in the resistance of this steel to intergranular corrosion. The assessment of the degree of intergranular corrosion was based on the measurement of mass loss and observation of corroded surfaces on optical and electron transmission and scanning microscopes.

Open access
Estimation of optical parameters of silicon single crystals with different orientations

Abstract

Optical properties of Si single crystals with different orientations (1 0 0) and (1 1 1) were investigated using spectrophotometric measurements in a spectral range of 200 nm to 2500 nm. The data of optical absorption revealed an indirect allowed transition with energy gap of 1.1 ± 0.025 eV. An anomalous dispersion in refractive index. The normal dispersion of the refractive index was discussed according to Wemple-DiDomenico single oscillator model. The oscillator energy Eo, dispersion energy Ed, high frequency dielectric constant ∈, lattice dielectric constant ∈L and electronic polarizability α e were estimated. The real ∈1 and imaginary ∈2 parts of dielectric constant were also determined.

Open access
Influence of bath temperature on microstructure and NH3 sensing properties of chemically synthesized CdO thin films

Abstract

Cadmium oxide (CdO) thin films were synthesized using chemical bath deposition (CBD) method from aqueous cadmium nitrate solution. The bath temperatures were maintained at room temperature (25 °C) and at higher temperature (80 °C). The structural studies revealed that the films showed mixed phases of CdO and Cd(OH)2 with hexagonal/monoclinic crystal structure. Annealing treatment removed the hydroxide phase and the films converted into pure CdO with cubic, face centered crystal structure. SEM micrographs of as-deposited films revealed nanowire-like morphology for room temperature deposited films while nanorod-like morphology for high temperature deposited films. However, cube-like morphology was observed after air annealing. Elemental composition was confirmed by EDAX analysis. Band gap energies of the as-deposited films varied over the range of 3 eV to 3.5 eV, whereas the annealed films showed band gap energy variation in the range of 2.2 eV to 2.4 eV. The annealed films were successfully investigated for NH3 sensing at different operating temperatures and at different gas concentrations. The room temperature synthesized film showed a response of 17.3 %, whereas high temperature synthesized film showed a response of 13.5 % at 623 K upon exposure to 24 ppm of NH3.

Open access
The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties

Abstract

The laser alloying is a continually developing surface treatment because of its significant and specific structuration of a surface. In particular, it is applied for Ti alloys, being now the most essential biomaterials’ group for load-bearing implants. The present research was performed on the Ti13Nb13Zr alloy subject to laser modification in order to determine the treatment effects on surface topography and its some mechanical properties like nanohardness, Young’s modulus, roughness. A pulse laser Nd:YAG was applied at three different laser pulse regimes: either 700 W, 1000 W or 1000 W treatment followed by 700 W modification at a pulse duration of 1 ms. The surface topography and morphology were examined using light microscopy and scanning electron microscopy with spectroscope of X-ray energy dispersion. The mechanical properties were determined by nanoindentation tests and surface roughness with a use of profilograph. The wettability was tested with a goniometer. The obtained results demonstrate complex behavior of the material surface: decrease in penetration distance and increase in hardness after first laser treatment, maintenance of this trend when machining using a higher laser pulse power, followed by an increase in penetration and decrease in hardness after additional laser treatment at lower power input, due to which a surface with fewer defects is obtained. The change in Young’s modulus follows the change in other mechanical properties, but not a change in roughness. Therefore, the observed hardening with the increase of the laser pulse power and then a small softening with the use of additional treatment with lower power can be attributed to some processes of remelting, diffusion and crystallization, sensitive to the previous surface state and heat energy flux. Despite that, the laser treatment always caused a significant hardening of the surface layer.

Open access
Influence of Parameters of Laser Beam Welding on Structure of 2205 Duplex Stainless Steel

Abstract

Laser welding is used in modern industry, having many advantages comparing to traditional welding technologies. Nowadays, industry sectors such as shipbuilding, automotive and aviation can’t be imagined without laser processing technologies. Possibility of increase of welded joint properties, autogenous welding and high level of process automation makes the technology of laser welding perspective part of the industry. Physical multidimensional processes complexity requires a deeper understanding of the impact of laser welding parameters on the quality of welded joints for industrial implementation. The paper presents results of microstructure investigations of laser beam welded stainless steel under various welding parameters. Welded joints was achieved by Ytterbium fiber laser type without the use of the filler material. Material for test was 2205 ferritic-austenitic duplex stainless steel (DSS) plates with thickness of 8 mm in delivery condition. The objectives of this research was to investigate influence of laser welding parameters on weld geometry of butt-welded joints. Investigations of bead shape revealed correlation between laser beam focus position and weld penetration depth.

Open access