Browse

61 - 70 of 334 items :

  • Materials Sciences x
Clear All
Numerical 3D simulations of seepage and the seepage stability of the right-bank dam of the Dry Flood Control Reservoir in Racibórz

Abstract

This article presents the results of numerical simulations of seepage through the body of the dam and the reservoir bed. The purpose of this study was to analyse the seepage stability during a flood as well as the impact on seepage stability of the diaphragm wall and gravel columns, on which the dam body is founded in selected segments. Simulations were conducted for three different locations, and the following 3D models of the dum were prepared:

  1. a model containing the front and right-bank part of the dam, for which no diaphragm wall, gravel columns and drainage ditch were provided for
  2. a model of a segment of the right-bank dam including a diaphragm wall, drainage ditch and gravel columns under the dam (two variants with differing diaphragm wall lengths)
  3. a model of the water dam segment accounting for gravel columns and a drainage ditch, but without a diaphragm wall. In the case of founding on gravel columns, the base was modelled as an anisotropic medium in terms of seepage properties, macroscopically equivalent to the actual soil medium.

The numerical model utilises the finite element method. The geometry of the dam and geological substrate was defined in the GIS tools in the form of a 3D model of the terrain and geology of the substrate.

Open access
Pullout Capacity Of Cylindrical Block Embedded In Sand

Abstract

Calculation of pullout capacity of anchoring concrete cylindrical block by finite element method is carried out. 3D model of the block assumes its free rotation. Alternative solutions with one and two pulling forces attached at different heights of the block are considered. Dependency of the ultimate pulling force on the points of its application, the block’s embedment depth as well as contact friction are investigated. Results of FE analysis and simple engineering estimations are compared. The maximum pullout resistance results from FE analysis when the rotation of the block is prevented.

Open access
Comparison of Analysis Specifications and Practices for Diaphragm Wall Retaining System

Abstract

Diaphragm walls are deep embedded earth retaining structures. They also act as a part of the foundation. Geotechnical codes of practice from various countries provide procedures for the analysis of deep foundations. Not many standards are available that directly regulate the analysis of diaphragm walls. This paper compares the analysis of diaphragm walls performed using the foundation codes of different countries. Codes including EN 1997-1, BS 8002, BS 8004, BS EN 1538, AASHTO LRFD Bridge Design Specifications, AS 4678, AS 5100.3, Canadian Foundation Engineering Manual, CAN/CSA S6, IS 9556 and IS 4651 are chosen for the study. Numerical studies and calculations are done using the finite element software Plaxis 2d. Comparative study is performed based on the values of displacements and the forces developed. Study also evaluates the effect of differences in partial safety factors. The outcome of research emphasises the need for development of comprehensive analysis procedures.

Open access
Powered Roof Support – Rock Strata Interactions on the Example of an Automated Coal Plough System

Abstract

The study summarises the operating characteristics of the powered roof support (shield) used in an automated plough system. Investigated longwall support units were controlled automatically or by section engineers and positioned in the ‘saw tooth’ configuration with respect to the longwall face (automatic mode) or linear to the face. Shield pressure data have been analysed in order to identify the impacts of particular factors on the pressure increase profiles. The analysis was supported by the Statistica software to determine the statistical significance of isolated factors. Equations governing the leg pressure at the given time instant were derived and the roof stability factor ‘g’ was obtained accordingly, recalling the maximal admissible roof displacement method recommended by the Central Mining Institute (Poland). In the current mining practice, its values are used in monitoring of strata behaviour as indicators of shield–strata interactions, particularly in the context of roof control in longwall mining. It is vital that the method used should be adapted to the actual conditions under which the longwall is operated. In the absence of such adaptations, there will be major discrepancies in results. The conclusions section summarises the current research problems addressed at the Department of Underground Mining, in which the support pressure data in longwall operations are used. The first aspect involves the delineation of deformations of a longwall main gate about 100 m ahead of the face. The second issue addressed involves the risk assessment of roof rock caving or rock sliding in the tail gate. Another aspect involves the standardisation of local conditions to support the methodology of interpreting shield–strata interactions in the context of work safety. These methods are being currently verified in situ.

Open access
Skin and Toe Resistance Mobilisation of Pile During Laboratory Static Load Test

Abstract

This article shows the mathematical method to determine the lateral stress on the shaft and toe resistance of pile using the new approach. The method was originally invented by Meyer and Kowalow for the static load test. The approximation curve was used for the estimation of both settlement curve and toe resistance curve of the pile. The load applied at the head of the pile is balanced by the sum of two components: the resistance under the toe of the pile and the skin friction. Therefore, the settlement curve is compilation of two factors: the skin friction curve and the resistance under toe curve. The analysis was based on the verification of the methods using laboratory experiments, that is, static load tests. The results of the research allowed to determine the relationship between parameters of the Meyer–Kowalow curve. On the basis of the relationships, it was possible to determine the skin friction and the toe resistance of the pile. Mathematical analysis of curve parameters allowed to determine the influence of the toe resistance on the settlement.

Open access
1 Development and applications of cellulose nanofibres based polymer nanocomposites
Open access