Browse

61 - 70 of 1,150 items :

  • Materials Sciences x
  • Materials Sciences, other x
Clear All
Mechanical and mathematical research of local deformations of a steel roller shell with a variable geometry of contact surface

Abstract

The article is devoted to solving the fundamental and applied problem of nonlinear structural mechanics of machines by introducing into the drum two additional stop cylinders with supporting rollers at the end and adjustable length, providing a given elliptical or circular shape of a flexible shell with a smoothly variable geometry in the area of its contact with compacted pavement material. Compaction of soil, gravel and asphalt concrete in the sphere of road is not only an integral part of the technological process of the roadbed, road foundation and surface construction, but it is actually the main operation to ensure their strength, stability and durability. The quality, cost and speed of road construction, the possibility of using fundamentally new technologies, structures and materials is largely determined by the availability of modern road machinery.

Open access
Mixed structure Zn(S,O) nanoparticles: synthesis and characterization

Abstract

In the present work, mixed structure Zn(S,O) nanoparticles have been synthesized using solution based chemical coprecipitation technique. Two different zinc sources (Zn(CH3COO)2·2H2O and ZnSO4·7H2O) and one sulfur source (CSNH2NH2) have been used as primary chemical precursors for the synthesis of the nanoparticles in the presence and absence of a capping agent (EDTA). The structural, morphological, compositional and optical properties of the nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transmission infra-red (FT-IR) and UV-Visible (UV-Vis) spectroscopy. XRD revealed the formation of mixed phases of c-ZnS, h-ZnS and h-ZnO in the synthesized nanoparticles. The surface morphology was analyzed from SEM micrographs which showed noticeable changes due to the effect of EDTA. EDX analysis confirmed the presence of zinc, sulfur and oxygen in Zn(S,O) nanoparticles. FT-IR spectra identified the presence of characteristic absorption peaks of ZnS and ZnO along with other functional group elements. The optical band gap values were found to vary from 4.16 eV to 4.40 eV for Zn(S,O) nanoparticles which are higher in comparison to the band gap values of bulk ZnS and ZnO. These higher band gap values may be attributed to the mixed structure of Zn(S,O) nanoparticles.

Open access
Multi-criteria decision analysis for simplified evaluation of clean energy technologies

Abstract

Technology assessment (TA) is not a new concept. High value energy technology identification needs to be followed by a decision process in which all shareholders contribute. A case study on Combined and Heat Power (CHP) technologies considered is presented to illustrate the applicability of fuzzy analytical hierarchy assessment approach (FAHP). The goal of this paper is to identify and evaluate the best variant of CHP technologies using multi-criteria that are technical feasibly and cost effective reflecting performance parameters. The results depict that technology A2 with an overall ranking of 0.438 is the best alternative compared to others. Taking into consideration decision parameters for the section, A1 is found to be relatively most important with a rating of 0.434 with its reliability and cost effectiveness. The presented fuzzy-based methodology is general expected to be used by a diverse target groups in energy sectors.

Open access
Numerical Study of an Isothermal Slush Flow for Aerospace Propulsion Applications

Abstract

Slushes are two-phase solid-liquid single-species cryogenic fluids that exhibit an increased density and a greater heat capacity with respect to the corresponding normal boiling point liquids. These promising features are of large interest for applications that exploit slush as a thermal fluid, like super magnets refrigeration, cryogenic cooling of bio-materials or air conditioning, and for aerospace systems that use slush fluids as fuel or oxidizer. Several programs in the frame of the research on Slush Hydrogen (SLH2) as a new-generation fuel for aerospace propulsion have been started in the past. This work was carried out in the framework of a VKI research activity promoted by the Predict ESA Technology Research Programme, to investigate experimentally and numerically the behavior of slush flows in a representative upper stage feeding line. In this paper, we present a simulation based on a granular two-fluid model on an isothermal solid liquid mixture (slurry) and a Nitrogen slush (SLN2) fluid flowing in a horizontal pipe. A finite-volumes discretization using the software library OpenFOAM was benchmarked against experimental and numerical literature data, to assess the accuracy of the code in predicting pressure drops along the pipe axis and solid particle distribution across the pipe diameter. Moreover, the effects of concentration and inlet velocity are investigated. We show that the numerical model fairly reproduces the literature data in terms of important aspects as the solid volume fraction distribution and the pressure drops, especially for high flow rates.

Open access
On the Areospace-Grade Adhesives Shear Strength Testing with ASTM D5656 Test as an Example

Abstract

This article presents adhesive shearing test methods, focusing especially on the ASTM D5656 method. These methods will be briefly characterized and compared. The most important concerns about the D5656 method are described. With the use of ASTM D1002 and D5656 methods, the influence of adherend surface preparation on shearing properties of the bond is evaluated. Compared to sandblasting only, sandblasting followed by the FPL process (sulfochromate etching of aluminum) increased shear strength of joints by 35 % for ASTM D1002 tests and by 48% for D5656 tests. Comparing these two methods, shear strength obtained in D5656 tests is about two times higher than in D1002 tests. The cause for this phenomena is much larger adherend thickness in the D5656 method, which provides the coupons with increased stiffness. Shear modulus, calculated with 3 different calculation methods, showed differences in obtained results, which points to necessary actualization of D5656 standard.

Open access
Preparation and Implementation of a Test Flight of Lightweight, Unmanned Stratospheric Balloon with Gopro Camera Mounted and Analysis of Acquired Material

Abstract

Publication contains a description of the preparation and the implementation of a test flight of a stratospheric balloon with a mounted camera GoPro Hero3. Description includes: used equipment, its parameters, role in the success of the mission and the difficulties and limitations that the project team encountered during the preparation and implementation of the flight. The mission was attended by a team of six engineers and scientists from the Remote Sensing Division, who were also involved in the implementation of the HESOFF project. One of the main goals of the HESOFF project was to obtain aerial images on the Krotoszyńska Plate (woj. wielkopolskie) using the Unmanned Aerial Vehicle (UAV) and to carry out remote monitoring of oak stands. The primary goal of an experimental balloon flight was to check the technical operational capability and gain experience in planning and implementing this type of project. During the balloon raising, the video material was acquired in the form of a recording, which later was analyzed. On the basis of the collected information, the conclusions regarding the possibility of implementing a long endurance flight in the stratosphere, illustrating (using a multisensor platform) research surfaces of the HESOFF project were presented. The stages of implementation of the presented mission were divided into following parts: preparation of the flight with the completion of equipment and necessary documents (flight permission), proper flight realization, understood as the release of the balloon and identification of the place where the equipment landed, as well as analysis and presentation of the results.

Open access
Problems of use of FMEA method in industrial enterprise

Abstract

Presented paper concentrate on problems connected with FMEA method usage in industrial enterprise. There is in the paper a description of the basic rules of FMEA method and competition between FMEA analysis and gap analysis. The analysis of defects has been done to find recommendations how to eliminate or restrain them. On the basis of conducted research we found that selection of staff to the team is very important factor in the FMEA analysis undertaking process. The staff should have appropriate level of knowledge about FMEA method methodology and other tools which are indispensable in the process of implementing this method within the company.

Open access
Review of Testing Methods Dedicated for Sandwich Structures with Honeycomb Core

Abstract

This paper is a review of testing methods dedicated for sandwich type composite structures with honeycomb core. First, information about the composition of sandwich materials structures, their properties, types of core materials and applications in the industry is presented. Mechanical properties were compared in the case of different types of the core material. Later, tests methods needed to describe properties of those materials and normalization organizations which create them were mentioned. The testing methods were divided into two groups: mechanical and physicochemical tests. Mechanical properties are: compressive strength (two types of test), edge compressive strength, shear strength (in two directions) and tension strength (two types of test). Physicochemical properties are: material density, water migration, water absorption and thermal conductivity. Testing methods were described according to American Society for Testing and Materials (ASTM) standards. This article is based on professional literature and the author’s experience.

Open access
Selective crystallization of gamma glycine for NLO applications using magnesium sulfate (MgSO4) as an additive

Abstract

Crystallization of γ-glycine in the presence of selected concentration (9 g/mL) of tailor-made additive magnesium sulfate heptahydrate salt (MgSO4·7H2O) has been studied at ambient temperature by adopting slow solvent evaporation procedure. The morphological modifications of glycine crystals grown from pure aqueous solutions of glycine and from glycine solutions containing magnesium species in the amount of 0.1 g/mL to 16 g/mL have been investigated thoroughly. The crystalline nature and phase identification of the crystalline material were confirmed by X-ray powder diffraction and SXRD studies. NMR studies revealed the information about the molecular conformation in solution, phase changes, functional groups and chemical environment. FT-IR spectra revealed distinct difference between α and γ-glycine polymorphs in the region around 880 cm−1 to 930 cm−1. The grown γ-glycine crystal had a lower cut-off value at 200 nm and the bandgap value evaluated from the Tauc plot was found to be 5.83 eV. The marked differences between α and γ-polymorphs of glycine were also revealed by DSC thermograms. The mechanical strength of the γ-glycine crystal was studied with the help of Vickers microhardness instrument. Kurtz-powder NLO study proved the generation of second harmonics (i.e. green light emission) in the grown γ-glycine crystal and its efficiency was calculated as 1.44 times better than that of the reference material potassium dihydrogen phosphate.

Open access
A Simulation Model for Computing the Loads Generated at Landing Site During Helicopter Take-Off or Landing Operation

Summary

The paper presents simulation method and results of calculations determining behavior of helicopter and landing site loads which are generated during phase of the helicopter take-off and landing. For helicopter with whirling rotor standing on ground or touching it, the loads of landing gear depend on the parameters of helicopter movement, occurrence of wind gusts and control of pitch angle of the rotor blades. The considered model of helicopter consists of the fuselage and main transmission treated as rigid bodies connected with elastic elements. The fuselage is supported by landing gear modeled by units of spring and damping elements. The rotor blades are modeled as elastic axes with sets of lumped masses of blade segments distributed along them. The Runge-Kutta method was used to solve the equations of motion of the helicopter model. According to the Galerkin method, it was assumed that the parameters of the elastic blade motion can be treated as a combination of its bending and torsion eigen modes. For calculations, data of a hypothetical light helicopter were applied. Simulation results were presented for the cases of landing helicopter touching ground with different vertical speed and for phase of take-off including influence of rotor speed changes, wind gust and control of blade pitch. The simulation method may help to define the limits of helicopter safe operation on the landing surfaces.

Open access