Browse

61 - 70 of 149 items :

  • Introductions and Overviews x
  • Materials Sciences, other x
Clear All
Improvement and Optimisation of Gyroplane Performance

Abstract

The aim of this study was to investigate possibilities of improving performance characteristics of light gyroplane, as well to propose new or improved solutions enhancing performance of this type of rotorcraft. The study has been conducted based on computational methods of Computational Fluid Dynamics, Flight Dynamics, Computer Aided Design and Optimisation. Results of the research confirm that using advanced computational methods it is possible to improve significantly the performance characteristics of light gyroplane. It can be achieved both through optimisation of the main rotor design and flight control strategy. An unconventional approach to rotorcraft optimisation has been presented, distinguishing by the fact that the objective was calculated based on computer simulations of selected states of gyroplane flight. One of the optimised main rotors had already been examined during flight tests, which confirmed its good perfonnance-and-exploitation properties and its advantage over classic gyroplane rotors. Developed by the author the family of gyroplane airfoils is a valuable alternative to classic airfoils utilised so far. The same applies to the blades built based on those airfoils. In particular, it concerns the unconventional design of the rotor blade of span-variable: chord and relative thickness. The developed methodology of numerical optimisation of flight-control strategy during the jump takeoff of the gyroplane presents an original approach to those problems and may be valuable tool supporting gyroplane-pilot training.

Open access
Influence of high temperatures on technical state of streets and roads structures with asphalt surfacing

Abstract

In this paper will be presented the influence of high temperatures on asphalt street pavement in terms of the influence of temperature on permanent deformations and thus the technical condition of the streets, comparable to the effects induced on extra-urban roads.

Environmental factors are one of the mayn factors being assaulted in operation and road structures are very important in terms of the influence they can have on the state road transport technical infrastructure.

Will be presented differences between urban road structures (streets) and extra-urban (road) both in terms of construction, the demands of traffic and environmental conditions to which they are subject.

Road structures extra-urban and urban areas are required differently in terms of the environmental conditions of the location ambient different thereof, that is, when the streets they are inside localities and the built environment significantly affect road infrastructure, unlike in the case of roads where they are located just outside the settlements, reducing the effect of air currents accumulation pavement surface temperature.

To demonstrate the influence of high temperatures on the pavement were conducted laboratory tests on asphalt mixtures in order to demonstrate the occurrence of reduction of physical characteristics, with adverse implications on the performance of applications similar to traffic.

Open access
Latin American Space Research - Challenges and Opportunities

Abstract

The interest of Latin American countries in space research has been successfully developing for many decades. It has its roots in the first development programmes for the Brazilian and Argentinian defence industry within the import substitution strategy, and then the export-oriented strategy during the period of the military rule. The endogenous development of space technology was treated in those countries as a priority and served as a way to diffuse technology to other industries, and as a model for the other countries in the region (Peru and Venezuela), which wished to develop outer space programme by developing their own technologies within the chosen range or by partaking in broader cooperation programmes on the Latin American continent [1]. The Latin American space agencies, which already existed in many countries in the 1960s and the 1970s, were carrying out relatively costly research, treating development in this area not only as the achievement of the economic development objectives, but also as an attempt to oppose the dominance of Washington [2]. Despite of the vast funding on endogenous research in the field of space engineering being provided, until the end of the last century only the projects conducted together with the Soviet Union (Cuba) or The United States were accomplished successfully. Currently and in the nearest future, the Latin American countries are still forced to rely on external assistance with satellite launching, expertise, more advanced technologies, etc. It should be noticed that countries conducting advanced and costly space programmes: the United States, Russia, China and the European Union (especially France and – but to a substantially lesser degree – Italy) show a growing interest in cooperation with Latin America and appreciation towards their specialists, high quality research and space technologies.

Open access
Mathematical Models for Nonlinear Soil Behavior

Abstract

Actually, the seismic movement has an irregular cyclic character.This can be equivalent to a determined number of uniform cyclical stresses equivalent in terms of effect.

Modeling the behavior of the soil to cyclical stress, is usually done, by establishing a relationship for primary loading like τ = f (γ) and after drawing the diagram “effortless strain curve”, in which τ is the stress, and γ is shear deformation. For modeling nonlinear behavior of the soil, we used like nonlinear models. The best known are the hyperbolic model and the Ramberg-Osgood model.

Open access
Parametric Study on How the Lateral Forces Acting on a Deep Foundation Influences the Axial Forces Developing in the Piles

Abstract

A missing piece in the design of bridge substructure is that the equation given in structural mechanics that assesses the axial forces in the piles of a deep foundation does not take into account the effect of lateral forces acting on the pile cap. In practice, pile forces are determined using a FEA software. This method, however, can not be easily incorporated into an automated program that performs local and global optimizations of a structure. One of the reasons is that this method is particularly demanding on the computational resources. Since a bridge can have a number of deep foundations, which must be verified for various combinations of actions, which need to be optimized, recalculated in various scenarios and then the entire process reiterated for all structural solutions, computational cost can become prohibitive. Another reason is that due to the lack of a relation between all the parameters and dimensions that influence the behaviour of a deep foundation, their optimization is difficult.

For this purpose, a parametric study has been carried out to investigate what parameters influence the relation between the lateral forces applied to the foundation and the axial forces that develop in the piles, and ultimately propose an equation that takes into account the lateral forces. The study is carried out using experimental data obtained on models using the finite element analysis method using SAP 2000 (v.15) software.

Open access
Preliminary Sub-Systems Design Integrated in a Multidisciplinary Design Optimization Framework

Abstract

The aircraft design is a complex subject since several and completely different design disciplines are involved in the project. Many efforts are made to harmonize and optimize the design trying to combine all disciplines together at the same level of detail. Within the ongoing AGILE (Horizon 2020) research, an aircraft MDO (Multidisciplinary Design Optimization) process is setting up connecting several design tools and competences together. Each tool covers a different design discipline such as aerodynamics, structure, propulsion and systems. This paper focuses on the integration of the sub-system design discipline with the others in order to obtain a complete and optimized aircraft preliminary design. All design parameters used to integrate the sub-system branch with the others are discussed as for their redefinition within the different detail level of the design.

Open access
Stress Distribution Investigation at the Tapered Sandwich Endings

Abstract

One of the typical sandwich ending is tapered transition to a solid laminate, which causes significant stress distribution changes. The reviewed articles show that tapered area causes increase in the shear stress in the core, increase of the axial forces in the facesheets and local bending at the fork point, at points of the tapering angle change, and at ply drop positions. Most of the studies gave attention to the endings without reinforcing. During Erasmus+ internship at KTH 2D model of the tapered ending with reinforcing plies, various geometry and resin filler in the core tip was investigated to see the influence on the stress distribution. It was found that tension load case is not as critical as bending load case. Increasing of the solid laminate thickness, adding plies and inserting a short resin or adhesive filler into the core tip area lead to significant stress reduction, whereas in the transition point, from tapering to constant thickness sandwich, increasing radius is more efficient than reinforcing plies in regard to reduce stress concentration.

Open access
The Sunet System for Monitoring Noise Pollution in Cluj-Napoca

Abstract

In Europe the need for local authorities to provide a high standard of living for their communities led to the establishment of the European noise mapping directive 2002/49/EC. Whilst Noise mapping itself doesn’t need continuous noise monitoring, states must produce a noise action plan which highlights actions they intend to take to reduce the number of people affected.

SUNET platform (System for Urban Noise and Eco-Traffic) was designed for improved management of the noise pollution in Cluj-Napoca and to provide up-to-date public data on a user-friendly interface. The implementation of the application over the entire municipality is highly advantageous for it creates a link between the town’s administration (the local authorities, the City Hall of Cluj-Napoca) and the user (the citizens) through this system which is dynamic, modern and compliant with the European regulations.

Open access
Wind Tunnel Tests of Influence of Boosters and Fins on Aerodynamic Characteristics of the Experimental Rocket Platform

Abstract

The paper presents results of wind tunnel tests of the Experimental Rocket Platform (ERP), which is developed in Institute of Aviation. It is designed as an easy accessible and affordable platform for microgravity experiments. Proposed design enables to perform experiments in microgravity for almost 150 seconds with apogee of about 100 km.

The full-scale model of the ERP has been investigated in the T-3 wind tunnel in Institute of Aviation. During the investigation, the aerodynamic loads of the rocket has been measured for the angle of attack up to 10° and the different rotation angle around the longitudinal axis (up to 90°, depending on the configuration). Three configurations has been investigated:

• without fins and boosters

• with fins and without boosters

• with fins and boosters

Additionally, the measurements of velocity field around the ERP using the Particle Image Velocimetry (PIV) has been performed.

Based on the wind tunnel test, an influence of fins and boosters on aerodynamic characteristics of the rocket has been described. Results of the wind tunnel tests show relatively high contribution of boosters in total aerodynamic drag. Some conclusions concerning performance and stability of the rocket have been presented.

Open access
Individual Autonomous Navigation System

Abstract

The article presents the Individual Autonomous System Navigation (IANS) supporting–rescuer or firemen in terms of navigation. Basic assumptions, which such a system has to fulfill in terms of functionality and accuracy, are presented. The concept of the ISAN system is based on the implementation of inertial navigation system which the only one to permit fully autonomous functioning. Measurement sensors of the navigation system with microprocessor board are placed in the rescuer’s shoe. To limit the escalation of the navigation errors value, which in the case of inertial navigation rises exponentially, a procedure of navigation parameters upgrading at every step of the rescuer is introduced to the proposed system. This procedure guarantees the required accuracy of navigation achievement. The article describes a developed and manufactured demonstrator of the technology and presents main results of its research. The research conducted in a building consisted in walking on the same level several hundred meters in less than 10 minutes. A walking test with a change of walking height was also performed in order to estimate the accuracy of the vertical channel. Results of the demonstrator’s tests let us conclude that the error of navigation is below 1% of the travelled distance and the accuracy is linear in respect to time. The achieved accuracy is fully sufficient for a practical IANS application.

Open access