Browse

You are looking at 61 - 70 of 965 items for :

  • Functional and Smart Materials x
Clear All
Open access

J. Warycha and W. Mielcarek

Abstract

Oxide varistors are made of inhomogeneous material whose properties are determined by active grain boundaries. It is essential that in the microstructure of a varistor only active grain boundaries are present as only such boundaries are involved in the process of conduction. Commercial varistors are characterized by a microstructure with a large amount of electrically inactive areas which include zinc-antimony spinel, bismuth oxide, and pores. Studies on elimination of inactive grain boundaries, which are the intergranular areas rich in reaction products of varistor components and pores, lead to an improvement in the microstructure, thereby improving the electrical properties of the varistor. The results were evaluated using statistical methods, defining the percentage of active grain boundaries in the varistor. Statistical analysis showed that the best results were obtained for a bismuth oxide varistor doped with antimony oxide, containing nearly 100 % conductive grain boundaries in its body.

Open access

Yifu Zhang

Abstract

Coordination of vanadyl (VO2+) ions with 8-hydroxyquinoline (8Hq) in the interlayer space of layered silicate magadiite (mag) was realized by solid-solid intercalation. Composition, structure and morphology of this compound were studied by X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The obtained results indicate that the basal spacing of decorated mag increased after intercalation and suggest that VO-8Hq decorated into the interlayer of mag (VO-mag-8Hq) was successfully synthesized for the first time. Optical properties of VO-mag-8Hq were studied by ultraviolet-visible (UV-Vis) and photoluminescence spectroscopy (PL). The findings reveal that VO-8Hq complexes in the interlayer space exhibit extraordinary fluorescence properties and the confined space of mag influences the optical properties of VO-8Hq complexes.

Open access

T. Salacinski, T. Chmielewski, M. Winiarski, R. Cacko and R. Świercz

Abstract

The paper describes processes of metal parts edges deburring and surface of metal samples polishing with ceramic tools based on fibre aluminium oxide. It presents the construction of basic types of tools and their practical industrial applications, and evaluates the influence of machining parameters on surface roughness. An important advantage of the used tools is the possibility of deburring and machining of external flat and shaped surfaces as well as internal surfaces and even deep drilled holes. These tools can be practically used for machining all construction materials. The results of machining of selected engineering materials, such as aluminium 5052 and 2017A, Inconel 718, non-alloy steel, in various variants of machining parameters are presented. The influence of machining parameters on machined surface roughness was described.

Open access

Mohamed Afqir, Amina Tachafine and Didier Fasquelle

Abstract

The main subject of the presented research is to investigate the dielectric properties of BaBi1.8Ln0.2Nb2O9 (Ln = Ce, Gd) ceramics prepared by conventional solid state reaction route. The materials were examined using XRD and FT-IR methods. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined. X-ray diffraction confirmed that all these compounds crystallize in an orthorhombic structure. Fourier transform infrared spectroscopy study confirmed the presence of two characteristic vibration bands located at around 617 cm-1 and 818 cm-1 for BaBi2Nb2O9. The experimental results show that the substitution of Bi by Ce or Gd causes a decrease in Curie temperature, dielectric constant and dielectric loss.

Open access

Esra Yildiz

Abstract

Zr0.99Gd0.01O2, Zr0.98Gd0.01Dy0.01O2 and Zr0.98Gd0.01Yb0.1O2 phosphors were synthesized by Pechini method at 1200 °C for 12 h in air. The phosphors were characterized by using X-ray powder diffraction (XRD), differential thermal analysis/thermal gravimetry (DTA/TG), scanning electron microscopy (SEM) and photoluminescence spectrofluorometer (PL). X-ray powder diffraction studies showed that the phosphors were crystallized as monoclinic and tetragonal multiphases. The particle size of the phosphors after heat treatment at 1200 °C was found to be of 200 nm to 250 nm. Luminescence studies on these phosphors have been carried out on the emission and excitation, along with lifetime measurements. The results of emission analysis indicate that the phosphors are expected to find potential applications as new optical materials.

Open access

Lazhar Leghrib and Abdelkader Nouiri

Abstract

During the characterization by electron beam techniques including scanning electron microscope (SEM) and cathodoluminescence at low dimensions, some undesirable phenomena (unwanted effects) can be created, like the thermal effects (or electron beam damage), and these effects can damage the sample. This limits the information one can get from a sample or reduces image spatial resolution. In order to understand these effects, significant efforts have been made but these studies focused on the thermal properties, without a detailed study of the causes of nanoscale heating in the bulk of samples during the SEM-characterization. Additionally, it is very difficult to measure experimentally the heating because there are many variables that can affect the results, such as the current beam, accelerating energy, thermal conductivity and size of samples. Taking into account all the factors and in order to determine the local temperature rise during the electron beam characterization of AlGaN at low dimensions, we have used a hybrid model based on combined molecular dynamics and Monte Carlo calculation of inelastic interaction of electrons with matter to calculate the temperature elevation during the SEM-characterization which can be taken into account during the characterization of AlGaN at low dimension by electron beam techniques.

Open access

W. Raczkiewicz

Abstract

The paper presents the test results to evaluate the effect of air-entraining agent addition on the intensity of reinforcement corrosion in concrete with blast-furnace slag cement in the case of simultaneous action of chloride corrosion and frost. Two groups of reinforced concrete specimens were prepared for the study. The first group of specimens included air-entraining agent addition and the other group was prepared without air-entraining agent. The blast-furnace slag cement (CEM III/A) was used for the specimens. Two parallel reinforcing rods were placed in each specimen. The specimens were subjected to 120 cycles of freezing and thawing in 3% NaCl solution to induce corrosion on the reinforcement. To determine the occurrence of the reinforcement corrosion and estimate the corrosion activity the non-destructive electrochemical galvanostatic pulse method was used. On each specimen the corrosion current density of the reinforcement was measured as well as the reinforcement stationary potential and the concrete coating resistivity, i.e. values indicating the ongoing reinforcement corrosion. Measurements were made on all specimens in two steps: before freezing and thawing cycles in 3% NaCl solution and after the cycles. The analysis of the obtained results allowed to determine differences in corrosion processes intensity on the reinforced bars in the concrete specimens depending on whether or not the air-entraining agent was added. Based on the analysis it was found that in the case of simultaneous action of chloride corrosion and frost it is advisable to use both blast-furnace slag cement and air-entraining agent. The use of only blast-furnace slag cement (although it is a chloride resistant cement), without the addition of air-entraining agent is insufficient.

Open access

B. Manoj, Ashlin M. Raj and George Thomas Chirayil

Abstract

Coal is a natural energy resource which is mainly used for energy production via combustion. Coal has nanocrystals embedded in it, formed during the coalification process, and is an ideal precursor for nano-carbon dots and diamonds. Herein, we report a facile top-down method to synthesise nanodots and diamonds of the size of 5 nm to 10 nm from three different types of coal by simple chemical leaching. TEM analysis revealed the formation of a mixture of carbon dots, graphene layers, and quantum dots in bituminous coal and sub-bituminous coal. Raman analysis confirmed the existence of synthesized nanodiamond and nano-carbon mixed phase with defects associated with it. It is concluded that graphene quantum dots, nanodiamonds, graphene sheets and carbon dots present in coal can be extracted by simple chemical treatment. These structures can be tuned to photoluminescent material for various optoelectronic applications or energy harvesting devices like super capacitors.

Open access

Afarin Bahrami, Kasra Behzad, Nastaran Faraji and Alireza Kharazmi

Abstract

This work presents the synthesis of PANI-PVA-ZnS nanocomposite films by gamma irradiation approach. The samples were irradiated with different doses ranging from 10 kGy to 40 kGy. Subsequently, structural, morphological, optical and electrical characteristics of the samples were investigated. Fourier transform infrared (FT-IR) spectroscopy was employed to study the chemical structure of the samples. Field emission scanning electron microscopy (FE-SEM) was used to investigate the morphology of nanocomposites. The electronic absorption characteristics of the samples were measured by means of UV-Vis spectroscopy. The AC and DC electrical behaviors of the samples were characterized using LCR meter in the frequency range of 20 Hz to 1 MHz. The impedance values of the samples were extracted from Cole-Cole plots and consequently DC conductivity was calculated.

Open access

Tanusree Mondal, Sayantani Das, T.P. Sinha and P.M. Sarun

Abstract

This work aims to study the electrical conduction mechanism in the dielectric material BaZr0.1Ti0.9O3 (BZT) ceramics by applying AC signal in the frequency range of 102 Hz to 106 Hz. The phase purity and microstructure of the sample have been studied by X-ray diffraction refinement and field-emission scanning electron microscope (FE-SEM) analysis. The appearance of resonance peaks in the loss tangent at high temperature is due to inherent dielectric relaxation processes of this oxide. The temperature dependent Cole-Cole plot has been studied in details to determine both the grain and grain boundary contribution to the conductivity. Electrical modulus analysis reveals that the hopping of charge carriers is the most probable conduction mechanism in BZT ceramics. The obtained data of AC conductivity obey the universal double power law and have been discussed in terms of microstructural network characteristics. The behavior of frequency exponent n of AC conductivity as a function of temperature verify the applicability of the correlated barrier hopping (CBH) model. The AC conductivity data are used to estimate the minimum hopping length, density of states at Fermi level, thermal conductivity and apparent activation energy. The value of activation energy confirms that the oxygen vacancies play a vital role in the conduction mechanism.