Browse

61 - 70 of 2,301 items :

  • Materials Sciences x
Clear All
Failure of Lightweight Aggregate Concrete in Compression under Stress Gradients

Abstract

The objective of this experiment is to investigate the behaviour of lightweight aggregate concrete (LWAC) under compression and with stress gradients. Experimental program contained three sets of LWAC which were used for production of 21 prisms. Lightweight aggregate argillite slate, called Stalite, from North Carolina had been used. The sets differed in using dry (0.10% moisture content) or saturated (7.9% moisture content) aggregate. The third set included a small amount of polyvinyl alcohol fibres (PVA). The geometry of the prisms were 100 × 140 × 480 mm (width × length × height). Prismatic samples were loaded centrically and eccentrically in compression.

From the achieved experimental results, it is visible that the lateral deformation of the most stressed fibre is counteracted by the less stressed fibres that confine compressive stress and increase strains. The obtained strain level was much higher than expected, especially for the third set of concrete samples with PVA fibres. Recorded strains in prisms test was in range from 3.08‰ to 6.82‰). In general, LWAC with Stalite showed ductile behaviour followed with very high strains. The third set of samples included a small amount of polyvinyl alcohol fibres (0.5% of volume fractions) was even more ductile and non-brittle.

Open access
Growth, solvent effect, optical and electrical properties of sodium 4-hydroxybenzenesulfonate dihydrate

Abstract

Single crystal of sodium 4-hydroxybenzenesulfonate dihydrate (Na-4-HBS) was grown from an aqueous solution by slow evaporation method. Powder X-ray diffraction study was carried out to identify the lattice parameters of the crystal. FT-IR spectral analysis confirmed the existence of various functional groups in the compound. The optical transmittance, cut-off wavelength and band gap energy were estimated from the UV-Vis studies. Photoluminescence studies revealed the transition mechanism by optical excitation. The variation of dielectric properties and AC conductivity of the grown crystal with frequency was studied at different temperatures. Measurements of mechanical properties of Na-4-HBS were carried out to find the hardness of the material. The laser induced surface damage threshold and relative second harmonic generation nonlinear optical properties of the grown crystal were studied using Q-switched Nd:YAG laser.

Open access
Hybrid-Optional Effectiveness Functions Entropy Conditional Extremization Doctrine Contributions into Engineering Systems Reliability Assessments

Abstract

In this publication a Doctrine for the Conditional Extremization of the Hybrid-Optional Effectiveness Functions Entropy is discussed as a tool for the Reliability Assessments of Engineering Systems. Traditionally, most of the problems having been dealt with in this area relate with the probabilistic problem settings. Regularly, the optimal solutions are obtained through the probability extremizations. It is shown a possibility of the optimal solutions “derivation”, with the help of a model implementing a variational principle which takes into account objectively existing parameters and components of the Markovian process. The presence of an extremum of the objective state probability is observed and determined on the basis of the proposed Doctrine with taking into account the measure of uncertainty of the hybrid-optional effectiveness functions in the view of their entropy. Such approach resembles the well known Jaynes’ Entropy Maximum Principle from theoretical statistical physics adopted in subjective analysis of active systems as the subjective entropy maximum principle postulating the subjective entropy conditional optimization. The developed herewith Doctrine implies objective characteristics of the process rather than subjective individual’s preferences or choices, as well as the states probabilities maximums are being found without solving a system of ordinary linear differential equations of the first order by Erlang corresponding to the graph of the process. Conducted numerical simulation for the proposed mathematical models is illustrated with the plotted diagrams.

Open access
The impact of composition dependent and process-related properties in the laser cutting of metallic glassy tapes

Abstract

A short survey is reported on the advantageous and disadvantageous properties of soft magnetic glassy tapes to build stator and rotor elements for the increase of motor efficiency. The relative high saturation magnetization and the relative permeability of these alloy groups seem to be promising in this application field. On the other hand, the sample thickness (30 µm) displays limitations in terms of a filling factor. High hardness of tapes hinders the effectivity of mechanical shaping. Laser cutting can be successful as shaping method, presuming that the extension (thickness) of heat affected zone (HAZ) can be successfully reduced below 50µm, avoiding the brittleness evolution.

Open access
Impact of Parameters of Irradiation of Potato Bulbs with UVC on Selected Coefficients of Assessment of Colour of Fries Determined with CIE L*A*B* Method

Abstract

Assessment of the colour with the use of many parameters is used with reference to evaluation of the quality changes of products resulting from application of specific technological treatments. The paper investigates the effect of relations between parameters of irradiation of potato bulbs with UVC on selected coefficients of assessment of the colour of fries determined with CIE L*a*b* method. It was statistically significantly proved that UV-C radiation affected brightness of fries, change in colour, recognition of the difference in colour and intensity of the colour reception. Statistical analysis of results was carried out at the assumed level of significance α=0.05.

Open access
Impact of Print Speed on Strength of Samples Printed in FDM Technology

Abstract

This paper presents research on the impact of printing speed on the strength of a manufactured object and is the next stage of the author's research on the impact of technological parameters of 3D printing on the strength of printed models. The tested universal specimens were printed using the FDM (Fused Deposition Modeling) method from PLA (polylactic acid, polylactide). The paper presents the maximum breaking force of the samples and the time of printing samples depending on the printing speed, which varied from 20 mm·s−1 to 100 mm·s−1. The research indicates that the strength of samples decreases with increasing speed. In the range of 50-80 mm·s−1, the strength of the specimens remined at a similar level, however, above 80 mm·s−1, it decreased significantly.

Open access
Implementation of Six Sigma methodology using DMAIC to achieve processes improvement in railway transport

Abstract

The provision of quality transport services is a prerequisite for the creation of an efficient organization that can meet the expectations and requirements of both the enterprise itself and its customers. From the railway enterprise's point of view, it is necessary to pay attention to the increasingly demanding requirements of its customers in railway passenger transport. This article focuses on identifying defects in rail transport processes that negatively affect ordinary operations. One of the most serious bottlenecks affecting railway transport reliability is the train delay, which fundamentally affects the perception of railway transport. At the same time, it emphasizes the need to apply individual tools according to the DMAIC cycle in order to achieve continuous improvement. The aim of the implemented Six Sigma methodology in railway enterprise is disciplined application of statistical problem-solving tools to recognize the gaps in the transport process and set out individual steps for their gradual removal.

Open access
Influence of Bi on dielectric properties of GaAs1−xBix alloys

Abstract

Pure GaAs and GaAs1−xBix alloys with different Bi ratios (1 %, 2.5 %, 3.5 %) fitted with silver contacts were measured with a dielectric spectroscopy device. Dielectric characterization was performed at room temperature in the frequency range of 0.1 Hz to 1 MHz. GaAs exhibits three relaxation regions corresponding to space-charge, dipolar and ionic polarizations in sequence with increasing frequency while GaAs1−xBix samples show only a broad dipolar polarization in the same frequency range. This result proves the filling of the lattice with Bi through making a new bonding reducing the influence of ionic polarization. This finding supports the previous results concerning optical properties of GaAs1−xBix, presented in the literature.

Open access
An Influence of Factors of Flow Condition, Particle and Material Properties on Slurry Erosion Resistance

Abstract

The degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.

Open access
The Influence of Pulsating Tensile Stress on Residual Magnetic Field of P91 Steel Samples

ABSTRACT

Measurements of Residual Magnetic Field RMF (the tangential component parallel to the load direction) were taken on the surface of P91 steel plate samples (X10CrMoVNb9-1) subjected to periodic pulsating tensile cyclic loads with the use of flux-gate and magneto impedance sensors, and preliminary measurement results are compiled and analyzed. The study investigates how the microstructure and load cycle parameters affect the RMF changes due to stress variations. Each combination of parameters: microstructure and load cycle corresponds to the characteristic variability pattern of magnetization and its maximum and minimum values.

Open access