Browse

51 - 60 of 446 items :

  • Materials Sciences x
Clear All
Stress states caused in chamber of reinforced concrete grain silo by non-centric emptying on large eccentricities

Abstract

The article presents the analysis of complex stress states in the concrete structure of grain silos, caused by non-centric emptying. The authors present a combination of loads from the pressure of bulk solid on the silo chamber according to Eurocode 1, Part 4 [11], which should be taken into account when emptying on large eccentricities in action assessment class 3 (AAC3) silos. For the example of a cylindrical wheat silo with a height of 25 m and a diameter of 10 m, the researchers carried out an analysis regarding the impact of the size of the eccentric discharge outlet on the distributions of forces and bending moments in a reinforced concrete wall.

Open access
Treatment of a collapsible soil using a bentonite–cement mixture

Abstract

The study of collapsible soils that are generally encountered in arid and semi-arid regions remains a major issue for geotechnical engineers. This experimental study, carried out on soils reconstituted in the laboratory, aims firstly to present a method of reducing the collapse potential to an acceptable level by treating them with different levels of bentonite–cement mixture while maintaining the water content and degree of compactness, thus reducing eventual risks for the structures implanted on these soils. Furthermore, a microscopic study using scanning electron microscopy was carried out to explore the microstructure of the soil in order to have an idea of the phenomena before and after treatment. The results show that treatment with a bentonite–cement mixture improves the geotechnical and mechanical characteristics, modifies the chemical composition of the soil, reduces the collapse potential and the consistency limits. The microstructural study and the X-ray energy dispersive spectroscopy analysis clearly illustrate an association of elementary particles in the soil aggregates, whereby the arrangement of these aggregates leads to the formation of a dense and stable material.

Open access
Low-Strength Substrates and Anthropogenic Soils in Transportation Engineering

Abstract

Road embankments, especially their slopes’ surfaces, must fulfil all the requirements concerning the exploitation criteria after the completion of construction works. This is very important while constructing or modernizing the embankments, based on the substrate including low-strength soils as well as in simple ground conditions (most convenient). The last dozen or so years of intensive construction of transport infrastructure have shown how big is the problem of ensuring the required volumes of qualified soil material for the construction of road embankments or the modernization of railway embankments. The depleting deposits of natural and easily accessible soils for the construction of embankments result in the need to use anthropogenic soils, for example, in the form of aggregates from the recycling of construction waste and other locally available waste materials, usually in the form of slag and ashes from the combined heat and power plants. In such cases, there’s a need to treat transportation earth structures individually in the scope of designing and quality control, because there are no applicable standard provisions in this scope.

This work indicates some of these important contemporary problems of transport engineering, occurring in newly built and modernized road objects, such as the stability of road embankments based on a low-strength substrate, use of anthropogenic soils and materials originating from the recycling of concrete surfaces for the construction of road embankments.

Open access
Influence of bedding and backfill soil type on deformation of buried sewage pipeline

Abstract

In the paper, the influence of different types of bedding and backfill soil surrounding underground sewage duct on its deformation was analysed. Impact of increased soil lateral pressure was examined by considering the construction of an embankment nearby the underground pipeline. Numerical computations of three different variants of bedding and backfill soil surrounding the pipe were carried out. Displacements and deformation of the pipe were calculated using the finite element method with adoption of elastic-perfectly plastic constitutive model of soil. Subsequent stages of the construction were taken into account. Shear strength reduction method was applied to evaluate the factor of safety of the entire system. Finally, the results and conclusions were depicted.

Open access
Landslide Susceptibility Assessment in Constantine Region (NE Algeria) By Means of Statistical Models

Abstract

The purpose of the present study was to compare the prediction performances of three statistical methods, namely, information value (IV), weight of evidence (WoE) and frequency ratio (FR), for landslide susceptibility mapping (LSM) at the east of Constantine region. A detailed landslide inventory of the study area with a total of 81 landslide locations was compiled from aerial photographs, satellite images and field surveys. This landslide inventory was randomly split into a testing dataset (70%) for training the models, and the remaining (30%) was used for validation purpose. Nine landslide-related factors such as slope gradient, slope aspect, elevation, distance to streams, lithology, distance to lineaments, precipitation, Normalized Difference Vegetation Index (NDVI) and stream density were used in the landslide susceptibility analyses. The inventory was adopted to analyse the spatial relationship between these landslide factors and landslide occurrences. Based on IV, WoE and FR approaches, three landslide susceptibility zonation maps were categorized, namely, “very high, high, moderate, low, and very low”. The results were compared and validated by computing area under Road the receiver operating characteristic (ROC) curve (AUC). From the statistics, it is noted that prediction scores of the FR, IV and WoE models are relatively similar with 73.32%, 73.95% and 79.07%, respectively. However, the map, obtained using the WoE technique, was experienced to be more suitable for the study area. Based on the results, the produced LSM can serve as a reference for planning and decision-making regarding the general use of the land.

Open access
Solutions of the Dirac Equation in a Bardeen Black Hole Geometry

Abstract

In this paper we study the Dirac equation in the geometry of a (regular) Bardeen black hole. We will focus on finding new analytical solutions in the vicinity of the black hole horizon. These solutions can be used with the asymptotic solutions (derived in a previous paper) to compute numerical phase shifts that define the scattering amplitudes.

Open access
Development and Testing of Data Reduction Software for Measurements Using Pressure Sensitive Paints

Abstract

The paper concentrates on post-processing of data necessary for pressure measurements using Pressure Sensitive Paints (PSP). The purpose of the study was to develop and test procedures for extraction of the surface pressure distribution from the images captured during PSP tests. The core issues addressed were reduction of the influence of model movement and deformation during wind tunnel run and synchronization between conventional pressure tap measurements and PSP data, necessary for in-situ calibration. In the course of the studies, two approaches on image registration were proposed: the first based on geometric transformation of control points pairs with cross-correlation tuning and the second based on similarity finding and estimation of geometric transformation of the images. Performance of the developed algorithm was tested with use of experimental set-up allowing for controlled movement of the imagined target with micrometer resolution. Both of the proposed approaches to PSP image resection proved to perform well. After testing of the software, the PSP system was used for determination of the pressure field on flat plate exposed to impinging jet. The presented procedures and results can be useful for research groups developing in-house PSP measurements systems for wind tunnel tests and internal flow investigations.

Open access
Electricity Storage in Energy Clusters

Abstract

The article aims to present the results of analysis and evaluation of using energy clusters as a bulk electricity storage. There were developed an analytical model of a sample microgrid (on-grid) and analysed using a software dedicated for optimizing such microgrids. The model of microgrid consist on electricity commercial and residential loads, photovoltaic and wind installations and batteries.

Open access
Green Propulsion Research at TNO the Netherlands

Abstract

This paper describes the recent theoretical and experimental research by the Netherlands Organisation for Applied Scientific Research (TNO) into green replacements for hydrazine, hydrazine derivatives and nitrogen tetroxide, as propellants for in-space propulsion. The goal of the study was to identify propellants that are capable of outperforming the current propellants for space propulsion and are significantly less hazardous for humans and the environment. Two types of propellants were investigated, being monopropellants and bipropellants. The first section of the paper discusses the propellant selection. Nitromethane was found to be the most promising monopropellant. As bipropellant, a combination of hydrogen peroxide (HP) and ethanol was selected, where the ethanol is rendered hypergolic with hydrogen peroxide. The second part of the paper describes the experimental verification of these propellants by means of engine testing. Initiation of the decomposition of nitromethane was found to be problematic, hypergolic ignition of the hydrogen peroxide and ethanol bipropellant however was successfully demonstrated.

Open access
Heat Transfer Determined by the Temperature Sensitive Paint Method

Abstract

The paper presents practical aspects of determining the amount of heat flow by measuring the distribution of surface temperature using the Temperature Sensitive Paint (TSP) method. The quantity measured directly with TSP is the intensity of the excited radiation, which is then converted to surface temperature. The article briefly presents three different methods for determining the heat transfer coefficient. Each of these methods is based on a separate set of assumptions and significantly influences the construction of the measuring station. The advantages of each of the presented methods are their individual properties, allowing to improve accuracy, reduce the cost of testing or the possibility of using them in tests of highly complex objects. For each method a mathematical model used to calculate the heat transfer coefficient is presented. For the steady state heat transfer test method that uses a heater of constant and known thermal power, examples of the results of our own research are presented, together with a comparison of the results with available data and a discussion of the accuracy of the results obtained.

Open access