Browse

51 - 60 of 278 items :

  • Porous Materials x
  • Materials Sciences x
Clear All
Influence of Soil Deformation Caused by Mining on Sewage Pipelines Built Using The Pipe Jacking Method

Abstract

This paper discusses the issues associated with the influence of underground mining operations on sewage pipelines built using the pipe jacking method. At present, to build sewage pipelines, especially in urban areas and deep embedment, trenchless technologies are employed. Mainly in these technologies, pipes are jacked into a bored tunnel using hydraulic jacks. These methods are also applied in mining areas.

The aim of this paper is to analyse the influence of ground deformation, caused by mining operations, on sewage pipelines built using the pipe jacking method. The type of pipelines discussed here is built with butted sections, which cannot compensate the influences of mining operations in pipe joints if horizontal compression occurs in the near-surface layer of soil. Pipelines embedded in trenches in the mining areas are secured against the influence of mining operations with expansion joints, which compensate for ground deformation. Hence, in the analysis of the influence of soil deformation caused by mining on sewage pipelines built using jacking method, special attention was paid to the performance of pipe joints. Pipelines of the type are subjected to additional loads and displacements, caused by soil deformations like horizontal strains, horizontal soil displacements and surface curvatures. We propose a way to consider the influence of mining operations on sewage pipelines built using the pipe jacking method.

Open access
Mixture of Crushed- Stone Aggregate as Material For Substructure Layers

Abstract

One of the most important elements of road construction is its substructure, which constitutes the base on which the next layers of road are placed. Mixture of crushed-stone aggregate is very often used as material for substructure. The most frequently used type of aggregate is magma rocks, due to its good physical-mechanical properties. However, it is not always available, so it is substituted by sandstone or even concrete rubble aggregates. The bearing ratio CBR is a parameter determining the suitability of a certain aggregate for road substructure. It is also one of the most popular quality tests of aggregate as it does not require complex apparatus. This paper analyses the results of physical and geotechnical tests with particular focus on CBR bearing ratio of crushed aggregates and their application as substructure for road construction. There has also been an attempt to find the correlation between CBR bearing ratio and other physical and geometrical properties.

Open access
Concrete surface evaluation based on the reflected TLS laser beam’s intensity image classification

Abstract

Dynamically developing terrestrial laser scanning technology (TLS)provides modern surveying tools, that is, scanning total stations and laser scanners. Owing to these instruments, periodic control surveys of concrete dams were performed as a part of geodetic monitoring yield point models characterised by quasicontinuity. Using the results of such measurements as a base, one can carry out a number of geometric analyses as well as acquire information for detailed analytical and calculative considerations.

The scanner, similar to total station, by determining distances and angles, identifies spatial coordinates (X, Y, Z) of the surveyed points. Registration of the reflected laser beam’s intensity value (Intensity) emitted by the scanner provides additional information on the surveyed object. Owing to high working speed and the large amount of the collected data, the scanners became an indispensable tool for geodesists.

The article assesses the possibility of application of terrestrial laser scanning in surveying changes in the surface of a concrete dam based on the experimental measurements. The condition of the dam’s downstream concrete wall was evaluated. The evaluation included changes in the surface’s roughness, cracks, seepage points, erosion caused by plant overgrowth and the degressive durability parameter of the used material (concrete).

The article presents an example of the application of the results of a laser scan in the assessment of the condition of a water dam’s external concrete surfaces. The results of experimental measurements were analysed – the results of a scan of the downstream concrete wall of a dam in Ecker (Germany) using two laser scanners characterised by different technical parameters, that is, laser wavelength (laser’s colour), range, definable point density, method of distance measurement – Leica C10, Z+F Imager 5006h. The measurement was carried out in the same weather conditions from the same sites of the test base.

The results of the measurements were analysed using, inter alia, statistical methods by defining template fields and supervised and unsupervised classification methods in reference to the selected fragments of the surface characterised by known concrete surface properties. Various classification algorithms were used. The obtained results make it possible to assess the suitability of the proposed methodology of evaluating the concrete surface’s condition and establish tool selection principles to match the practical application requirements.

Open access
Modelling and Assessment of a Single Pile Subjected to Lateral Load

Abstract

A three-dimensional finite element technique was used to analyse single pile lateral response subjected to pure lateral load. The main objective of this study is to assess the influence of the pile slenderness ratio on the lateral behaviour of single pile. The lateral single pile response in this assessment considered both lateral pile displacement and lateral soil resistance. As a result, modified p-y curves for lateral single pile response were improved when taking into account the influence lateral load magnitudes, pile cross sectional shape and flexural rigidity of the pile. The finite element method includes linear elastic, Mohr-Coulomb and 16-nodes interface models to represent the pile behaviour, soil performance and interface element, respectively. It can be concluded that the lateral pile deformation and lateral soil resistance because of the lateral load are always influenced by lateral load intensity and soil type as well as a pile slenderness ratio (L/D). The pile under an intermediate and large amount of loading (in case of cohesionless soil) has more resistance (low lateral displacement) than the pile embedded on the cohesion soil. In addition, it can be observed that the square-shaped pile is able to resist the load by about 30% more than the circular pile. On the other hand, pile in cohesionless soil was less affected by the change in EI compared with that in cohesive soil.

Open access
Stress–Dilatancy For Crushed Latite Basalt

Abstract

In this article, the stress–dilatancy relationship for crushed latite basalt is analysed by using Frictional State Theory. The relationship is bilinear, and the parameters α and β determine these two straight lines. At the initial stage of shearing, the mean normal stress increment mainly influences breakage, but at the advanced stage, it is shear deformation that influences breakage. At the advanced stage of shearing, the parameter αpt represents energy consumption because of breakage and βpt mainly represents changes in volume caused by breakage during shear. It is also shown that breakage effect is significant at small stress levels and the η-Dp plane is important to fully understand the stress–strain behaviour of crushed latite basalt in triaxial compression tests.

Open access
The concept of modification and analysis of the strength of steel roadway supports for coal mines in the Soma Basin in Turkey

Abstract

The article presents a comparison of the roadway supports currently used in mines in the Soma basin in Turkey with new one proposed by Huta Łabędy and Central Mining Institute (GIG) in terms of resistance parameters and work in conditions of specific loads. The strength analysis of the frame was carried out using the finite element method, using the COSMOS/M program, based on the methodology developed and applied in GIG.

The frame models were built corresponding to their geometry and cross-sectional parameters of the sections used. Beam elements (BEAM3D) were used for building models, which were given cross-sectional parameters of the V36 section. This resulted in three frame models that were loaded in three ways (three load variants). The first option included roof load, acting on the roof bar in a uniform manner, at a length of about 3.0 m. In the second variant, the same load was adopted but the resistance of the side wall was omitted. However, in the third variant, the same roof load was assumed in addition to a side load, acting on the sliding arch, at a length of about 3.0 m, a value corresponding to half the load of the roof. As a result of the calculations carried out, the distribution of reduced stresses in the analysed frames and the maximum load values were obtained.

The proposed roadway supports retain the functionality of the previously used frames in terms of width, height, cross-sectional area of the support and the number of elements. They are characterised by the same weight and at the same time, they have up to 24% more load capacity because of the replacement of straight sections of curved side sections. This treatment was possible by forming individual elements of the arch with two bending radii. The additional load increase was obtained by using S550W steel.

Open access
Numerical 3D simulations of seepage and the seepage stability of the right-bank dam of the Dry Flood Control Reservoir in Racibórz

Abstract

This article presents the results of numerical simulations of seepage through the body of the dam and the reservoir bed. The purpose of this study was to analyse the seepage stability during a flood as well as the impact on seepage stability of the diaphragm wall and gravel columns, on which the dam body is founded in selected segments. Simulations were conducted for three different locations, and the following 3D models of the dum were prepared:

  1. a model containing the front and right-bank part of the dam, for which no diaphragm wall, gravel columns and drainage ditch were provided for
  2. a model of a segment of the right-bank dam including a diaphragm wall, drainage ditch and gravel columns under the dam (two variants with differing diaphragm wall lengths)
  3. a model of the water dam segment accounting for gravel columns and a drainage ditch, but without a diaphragm wall. In the case of founding on gravel columns, the base was modelled as an anisotropic medium in terms of seepage properties, macroscopically equivalent to the actual soil medium.

The numerical model utilises the finite element method. The geometry of the dam and geological substrate was defined in the GIS tools in the form of a 3D model of the terrain and geology of the substrate.

Open access
Pullout Capacity Of Cylindrical Block Embedded In Sand

Abstract

Calculation of pullout capacity of anchoring concrete cylindrical block by finite element method is carried out. 3D model of the block assumes its free rotation. Alternative solutions with one and two pulling forces attached at different heights of the block are considered. Dependency of the ultimate pulling force on the points of its application, the block’s embedment depth as well as contact friction are investigated. Results of FE analysis and simple engineering estimations are compared. The maximum pullout resistance results from FE analysis when the rotation of the block is prevented.

Open access
Comparison of Analysis Specifications and Practices for Diaphragm Wall Retaining System

Abstract

Diaphragm walls are deep embedded earth retaining structures. They also act as a part of the foundation. Geotechnical codes of practice from various countries provide procedures for the analysis of deep foundations. Not many standards are available that directly regulate the analysis of diaphragm walls. This paper compares the analysis of diaphragm walls performed using the foundation codes of different countries. Codes including EN 1997-1, BS 8002, BS 8004, BS EN 1538, AASHTO LRFD Bridge Design Specifications, AS 4678, AS 5100.3, Canadian Foundation Engineering Manual, CAN/CSA S6, IS 9556 and IS 4651 are chosen for the study. Numerical studies and calculations are done using the finite element software Plaxis 2d. Comparative study is performed based on the values of displacements and the forces developed. Study also evaluates the effect of differences in partial safety factors. The outcome of research emphasises the need for development of comprehensive analysis procedures.

Open access
Powered Roof Support – Rock Strata Interactions on the Example of an Automated Coal Plough System

Abstract

The study summarises the operating characteristics of the powered roof support (shield) used in an automated plough system. Investigated longwall support units were controlled automatically or by section engineers and positioned in the ‘saw tooth’ configuration with respect to the longwall face (automatic mode) or linear to the face. Shield pressure data have been analysed in order to identify the impacts of particular factors on the pressure increase profiles. The analysis was supported by the Statistica software to determine the statistical significance of isolated factors. Equations governing the leg pressure at the given time instant were derived and the roof stability factor ‘g’ was obtained accordingly, recalling the maximal admissible roof displacement method recommended by the Central Mining Institute (Poland). In the current mining practice, its values are used in monitoring of strata behaviour as indicators of shield–strata interactions, particularly in the context of roof control in longwall mining. It is vital that the method used should be adapted to the actual conditions under which the longwall is operated. In the absence of such adaptations, there will be major discrepancies in results. The conclusions section summarises the current research problems addressed at the Department of Underground Mining, in which the support pressure data in longwall operations are used. The first aspect involves the delineation of deformations of a longwall main gate about 100 m ahead of the face. The second issue addressed involves the risk assessment of roof rock caving or rock sliding in the tail gate. Another aspect involves the standardisation of local conditions to support the methodology of interpreting shield–strata interactions in the context of work safety. These methods are being currently verified in situ.

Open access