Browse

51 - 60 of 13,397 items :

  • Engineering x
Clear All

Abstract

This paper reports the research results on the target group survey at European level, composed of manufacturing SMEs and VET regarding knowledge and skills gaps about Industry 4.0, namely knowledge and skills gaps. It sets the basis for elaboration of the of a training course and a practical methodology for web based learning in accordance with the target groups’ needs as well as to provide basis for forming recommendations for evidencebased policy in the field of web based learning. The suggested training modules are: Introduction to Industry 4.0; Solutions for smart production environments in the manufacturing sector; Smart robotics; and Application of CPS/IoT across the process chain. The preferences according to the technological solutions/functions in an interactive educational website are highlighted as well as the proportion of theory and practical on the job training when organizing web based learning in the field of Industry 4.0.

Abstract

The Loess Plateau is the main source of water in Yellow River, China. After 1980s, the Yellow river water presented a significant reduction, what caused the decrease of the Yellow river discharge had been debated in academic circles. We proceeded with runoff generation mechanisms to explain this phenomenon. We built saturation excess runoff and infiltration excess runoff generation mechanisms for rainfall–runoff simulation in Jingle sub-basin of Fen River basin on the Loess Plateau, to reveal the influence of land use change on flood processes and studied the changes of model parameters under different underlying conditions. The results showed that the runoff generation mechanism was mainly infiltration-excess overland flow, but the flood events of saturation-excess overland flow had an increasing trend because of land use cover change (the increase of forestland and grassland areas and the reduction of cultivated land). Some of the model parameters had physical significances,such as water storage capacity (WM), infiltration capacity (f), evapotranspiration (CKE), soil permeability coefficient (k) and index of storage capacity distribution curve (n) showed increasing trends, and index of infiltration capacity distribution curve (m) showed a decreasing trend. The above results proved the changes of runoff generation mechanism from the perspective of model parameters in Jingle sub-basin, which can provide a new perspective for understanding the discharge reduction in the Yellow River basin.

Abstract

The role of stony soils in runoff response of mountain catchments is rarely studied. We have compared simulated response of stony soils with measured catchment runoff for events caused by rains of small and high intensities in the mountain catchment of the Jalovecký Creek, Slovakia. The soil water response was simulated for three sites with stoniness 10–65% using the Hydrus-2D single porosity model. Soil hydraulic parameters employed in the modelling, i. e. the saturated hydraulic conductivity and parameters of the soil water retention curves, were obtained by two approaches, namely by the Representative Elementary Volume approach (REVa) and by the inverse modelling with Hydrus-1D model (IMa). The soil water outflow hydrographs simulated by Hydrus-2D were compared to catchment runoff hydrographs by analysing their skewness and peak times. Measured catchment runoff hydrographs were similar to simulated soil water outflow hydrographs for about a half of rainfall events. Interestingly, most of them were caused by rainfalls with small intensity (below 2.5 mm/10 min). The REV approach to derive soil hydraulic parameters for soil water outflow modelling provided more realistic shapes of soil water outflow hydrographs and peak times than the IMa approach.

Abstract

In agricultural land use, organic residues such as compost, digestate, and sewage sludge are discussed as costeffective soil conditioner that may improve the water holding capacity and crop available soil moisture. The objective of this study is to determine the effect of application of digestates with different compositions in maize, sugar beet and winter wheat, compost of shrub debris and sewage sludge on shrinkage behaviour and contact angle of till-derived loamy topsoil of a Haplic Luvisol under agricultural use. Novelty is the simultaneous determination of contact angle and shrinkage of soils amended with digestates composed of different composition in maize, sugar beet and winter wheat, compost of shrub debris and sewage sludge. The results suggest that the application of organic residues impacts the air capacity, while the contact angles remained in the subcritical range between > 0° and < 90°. The relationship between CA values and moisture ratios, ϑ, during proportional shrinkage was positive and linear (r2 of 0.98) and negative during residual- and zero-shrinkage (r2 of 0.93).

Abstract

Over the last few years, the Industry 4.0 concept (called the Fourth Industrial Revolution) has attracted attention among both academics and practitioners. Industry 4.0 is a very broad domain including production processes, efficiency, data management, relationship with consumers, competitiveness, and much more. Therefore, the aim of the paper is to present new factory archetypes. The manuscript uses a synthesis of literature (scientific studies and industrial reports). Based on the results obtained, the archetypes of factories of Industry 4.0 are described. The presented manuscript contributes to the development of literature on the concept of Industry 4.0. The results obtained from the analysis of the literature not only summarize the existing knowledge about Smart Factories, but also indicate the directions of potential research.

Abstract

This paper aims to mirror the way the European Professors of Industrial Engineering and Management (EPIEM)network perceives itself with a students’ view. Along with a presentation of the status quo of the EPIEM network, a brief survey among students is deployed to get an impression of the perception of EPIEM by its most active partner association - the European Students of Industrial Engineering and Management (ESTIEM). The explorative findings (i) provide insights into the current situation of EPIEM from an inside and outside perspective and (ii) deliver ideas for the future development of the EPIEM network. With regard to the relationship management practice between EPIEM and ESTIEM this research represents an innovative approach within the European IEM organizations.

Abstract

Hundreds of millions of people around the world spend almost a third of their day at work. Many of them are dissatisfied with the climatic conditions in which they work, being exposed to various risks of heat or cold. The most common reasons for dissatisfaction are elements related to IAQ (Indoor Air Quality), in other words, thermal comfort and air quality inside the buildings. Thus, the assessment of the microclimate in the workplace is very important, and the IAQ indicators play a decisive role in the mental and physical capabilities. This writting wants to identify for the area of Mures county how many of the managers of the production halls with microclimate with heat release, where the workers are exposed to stress because of the heat, are aware of these elements and give them the proper importance.

Abstract

This paper presents fault detection techniques, especially the motor current signature analysis (MCSA) which consists of the phase current measurement of the electrical motor’s stator and/or rotor. The motor current signature analysis consists in determining the frequency spectrum (FFT) of the stator current signal and evaluating the relative amplitude of the current harmonics. Sideband frequencies appear in the frequency spectrum of the current, corresponding to each fault. The broken bar is a frequent fault in induction motors with squirrel-cage rotor. It is presented the equivalent circuit for induction motors and the equivalence between the squirrel-cage rotor and the rotor windings. It is also presented an equivalent circuit model for induction motors with squirrel cage rotor, and based on this a Simulink model was developed. It is shown how a broken rotor bar influences the magnetic field around the rotor and through this the stator current. This modification is highlighted through the developed model.

Abstract

The overall study objection is selection and optimization all available thermodynamic data required for using calculation of phase diagram (CALPHAD) technique within the Fe-C-Cr-Mn-Si-Ti system. Such data collected in the thermodynamic database can be used for predicting the phase constitution states of a given composition for Fe-based hardfacing materials, which often use in energy industry in order to increase the abrasion and impact wear resistance of equipment parts. In order to compare theroretical calculation results with experimental data, four different types of hardfacing were deposited using flux-cored arc welding. Microstructure and chemical composition of deposited layers was investigated using optical and scanning electron microscopy together with energy dispersive X-ray spectroscopy. Comparison of experimental and computed results shows that they are in good agreement in meaning of presence of all-important phase equilibrium regions. The developed database can be used for rational selection of hardfacing materials for energy industry equipment and reasonable choice of new alloying systems.

Abstract

The paper presents validation of a mathematical model describing the friction factor by comparing the predicted and measured results in a broad range of solid concentrations and mean particle diameters. Three different types of solids, surrounded by water as a carrier liquid, namely Canasphere, PVC, and Sand were used with solids density from 1045 to 2650 kg/m3, and in the range of solid concentrations by volume from 0.10 to 0.45. All solid particles were narrowly sized with mean particle diameters between 1.5 and 3.4 mm. It is presented that the model predicts the friction factor fairly well. The paper demonstrates that solid particle diameter plays a crucial role for the friction factor in a vertical slurry flow with coarse solid particles. The mathematical model is discussed in reference to damping of turbulence in such flows. As the friction factor is below the friction for water it is concluded that it is possible that the effect of damping of turbulence is included in the KB function, which depends on the Reynolds number.